CCOBRA and the PRECORE Modeling Challenge

Nicolas Riesterer (riestern@cs.uni-freiburg.de) July 24th, 2019

Cognitive Computation Lab, Department of Computer Science, University of Freiburg

- Long history of research in human reasoning
- Achievements:
 - Psychological phenomena
 - Statistical effects
- Cognitive models integrating theoretical assumptions

Some researchers are logicians Some logicians are professors

What, if anything follows?

Some researchers are logicians Some logicians are professors

No Valid Conclusion

- Conclusion is derived from premise quantifiers
- Feature extraction:
 - Universality: All/No vs. Some/Some ... not
 - Valence: All/Some vs. No/Some ... not
- Conclusion generation from combining the premise features
- No prediction about the direction of the conclusion terms

Quantifiers	All	Some	No	Some not	
All	All	Some	No	Some not	
Some	Some	Some	Some not	Some not	
No	No	Some not	No	Some not	
Some not	Some not	Some not	Some not	Some not	

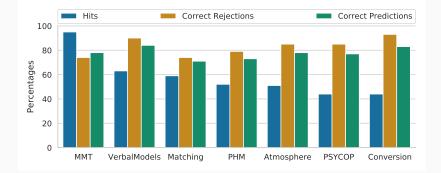
Heuristics	Formal Rules	Diagrams, Sets & Models		
Atmosphere	PSYCOP	Euler Circles		
Matching	Verbal Substitutions	Venn Diagrams		
Conversion	Source-Founding	Verbal Models		
Probability Heuristics	Monotonicity	Mental Models		

Syllogism	Premises	Percentage of putative conclusions								
		Aac	Eac	Iac	Oac	Aca	Eca	Ica	Oca	NVC
AA1	Aab, Abc	81	2	6		1		1		1
AA2	Aba, Acb	35	1	3		48	1	4		1
AA3	Aab, Acb	47	1	6		7		1		31
AA4	Aba, Abc	49	1	12		10		4		22
AI1	Aab, Ibc	2	1	70	1			4		16
AI2	Aba, Icb	2	1	20				71		4
AI3	Aab, Icb	2	1	13	1			43		37

Table 7

Predicted Responses for Each Syllogism From Seven Theories of Syllogistic Reasoning

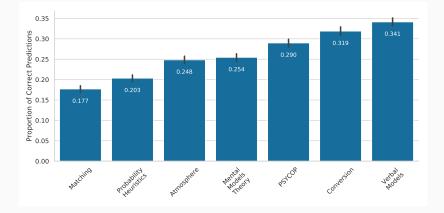
Syllogism	Atmosphere	Matching	Conversion	PHM	PSYCOP	Verbal models	Mental models
				Valid syllogis	sms		
AA1	Aac, Aca	Aac, Aca	Aac, Aca	Aac, Aca, Iac, Ica	Aac, Iac, Ica	Aac	Aac, Aca, Ica
AA2	Aac, Aca	Aac, Aca	Aac, Aca	Aac, Aca, Iac, Ica	Aca, Iac, Ica	Aca	Aca, Aac, Iac
AA4	Aac, Aca	Aac, Aca	Aac, Aca	Aac, Aca, Iac, Ica	Iac, Ica	NVC, Aca	Aac, Aca, Iac, Ica
AI2	Iac, Ica	Iac, Ica, Oac, Oca	Iac, Ica	Ica, Oca	Iac, Ica, Oac, Oca	Ica	Ica, Iac
AI4	Iac, Ica	Iac, Ica, Oac, Oca	Iac, Ica	Iac, Oac	Iac, Ica, Oac, Oca	NVC, Ica	Iac, Ica
AE1	Eac, Eca	Eac, Eca	Eac, Eca	Eac, Oac	Eac, Eca, Iac, Ica, Oac, Oca	Eac	Eac, Eca
AE2	Eac, Eca	Eac, Eca	Eac, Eca	Eca, Oca	Oac, Iac, Ica	NVC, Eca	Eac, Eca, Oca, Oac, NV
AE3	Eac, Eca	Eac, Eca	Eac, Eca	Eca, Oca	Eac, Eca	NVC, Eac, Eca	Eac, Eca
AE4	Eac, Eca	Eac, Eca	Eac, Eca	Eac, Oac	Oac, Iac, Ica	NVC, Eac	Eac, Eca, Oac, Oca, NV
AO3	Oac, Oca	Iac, Ica, Oac, Oca	Oac, Oca	Oca, Ica	Oca, Ica, Iac	NVC, Oca	Oac, Oca, NVC



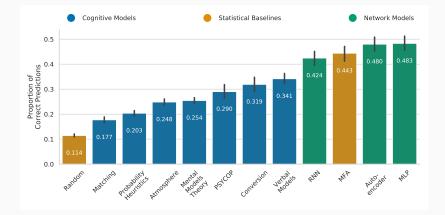
- Models are able to account for aggregate data well
- Suggests a fundamental grasp of the "average" reasoning processes
- But, recent work on group-to-individual generalizability suggests potential for problems

Can we apply current models to predict individual reasoning behavior?

Predicting Individual Responses (Riesterer, Brand & Ragni, 2019)



- Aggregate performance does not generalize well to individual reasoning
- Why is this the case?
 - Noisy data?
 - Suboptimal implementation (focus on aggregates)?
 - Lacking theoretical assumptions?



We need to establish benchmarks of cognitive models on individual (trial-based) data and improve model implementations!

What should we expect from cognitive models?

"Cognitive scientists seek to understand how the mind works. That is, we want to describe and predict people's behavior, and we ultimately wish to explain it, in the same way that physicists predict the motion of an apple that is dislodged from its tree (and can accurately describe its downward path) and explain its trajectory (by appealing to gravity)."

[Farrell & Lewandowsky, 2018]

"Cognitive modeling is an area of computer science that deals with simulating human problem-solving and mental processing in a computerized model. Such a model can be used to simulate or predict human behavior or performance on tasks similar to the ones modeled and improve human-computer interaction."

[Margaret Rouse, SearchEnterprise.ai]

A cognitive model should be descriptive, predictive, and explanatory, and should focus on simulating human problem-solving and mental processing.

"What I Cannot Create, I Do Not Understand" [Richard Feynman] Cognitive Models are Descriptive Cognitive Models are Predictive Cognitive Models allow for Simulation Cognitive Models are Descriptive Cognitive Models are Predictive Cognitive Models allow for Simulation

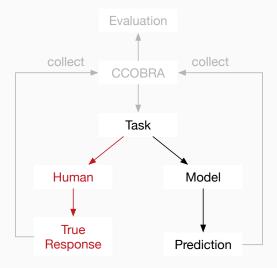
Cognitive Models are Descriptive 🗸

Cognitive Models are Predictive ?

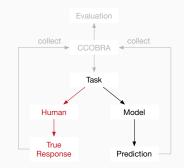
Cognitive Models allow for Simulation X

We need to establish simulatory predictive benchmarks for cognitive models.

The CCOBRA Framework



- Simulate the data-generating experiment
- Models predict individual responses
- No restrictions wrt. formalisms (e.g., probabilistic, logic)
- Evaluation based on accuracy of predictions



- Pre-Training:
 - General parameter fitting
 - Unrelated dataset
 - Before entering prediction phase
- Individual Adaption:
 - After predictions are generated
 - CCOBRA provides true participant response
 - Allows for the integration of inter-individual effects

- 1. Iterate over participants in the dataset
- 2. Iterate over individual trials for this participant
- 3. Query model for a precise prediction
- 4. Compare prediction with true response (hits/misses)

Available Online

- Syllogistic Reasoning
- Spatial-Relational Reasoning
- Propositional Reasoning

In Preparation

- Conditional Reasoning
- Modal Reasoning
- Nonmonotonic Reasoning

CCOBRA is focused on easy extensibility.

The PRECORE Challenge

- Invite researchers from different fields (AI, CogSci, ...)
- Establish a future-proof benchmarking challenge
- Create a well-defined goal for research

• Modeling Task:

Predict individual human syllogistic reasoning

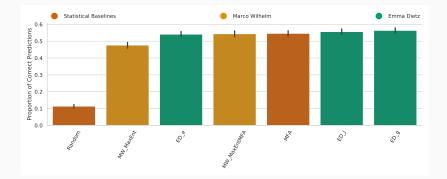
- Model Input:
 - Task: "Some; models; managers/All; models; clerks"
 - Choices: nine syllogistic response options
- Model Output:

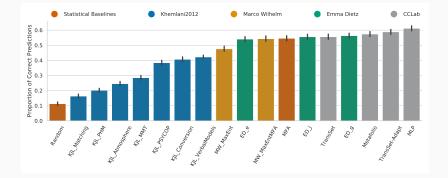
Specific syllogistic conclusion (one out of the nine choices)

- Dr. Emmanuelle-Anna Dietz Saldanha & Robert Schambach
 - Weak-Completion Semantics (WCS)¹
 - Nonmonotonic three-valued logics
 - Individulization by de-/activating inference principles
- Marco Wilhelm
 - Max. Entropy Model
 - Novel approach to modeling syllogistic reasoning
 - Will be presented in the next talk

¹da Costa et al. (2017)

- Unpublished dataset:
 - Lab experiment at the university of Freiburg
 - N = 53 participants
 - Responses for all 64 syllogisms
- Leave-one-out crossvalidation:
 - Evaluate predictions for 1 participant, train on the 52 remaining ones
 - Cycle through all participants and report the average result





- Predictive modeling of syllogistic reasoning is possible!
 - Predictions should be at the core of model evaluation
 - Integration of more and more effects should necessarily lead to better predictions
- There is potential left for better cognitive models
- Researchers should not be afraid to investigate novel approaches
 - Formal logics (MaxEnt, WCS)
 - Subsymbolic approaches

References

- da Costa, A. O., Dietz Saldanha, E. A., Hölldobler, S., & Ragni, M. (2017). A Computational Logic Approach to Human Syllogistic Reasoning. In Proceedings of the 39th Annual Meeting of the Cognitive Science Society.
- Farrell, S., & Lewandowsky, S. (2018). Computational modeling of cognition and behavior. *Cambridge University Press*.
- Khemlani, S., & Johnson-Laird, P. N. (2012). Theories of the syllogism: A meta-analysis. *Psychological bulletin*, 138(3), 427–457.
- Riesterer, N., Brand, D., & Ragni, M. (2019). Predictive Modeling of Individual Human Cognition: Upper Bounds and a New Perspective on Performance. In Stewart T. (Ed.), Proceedings of the 17th International Conference on Cognitive Modeling.
- Woodworth, R. S., & Sells, S. B. (1935). An atmosphere effect in formal reasoning. Journal of Experimental Psychology, 18, 451–460.

Find CCOBRA on 🔿

https://github.com/CognitiveComputationLab/ccobra