Predictive Modeling of Individual Human Cognition: Upper Bounds and a New Perspective on Performance

Nicolas Riesterer, Daniel Brand & Marco Ragni

July 20th, 2019

Cognitive Computation Lab, Department of Computer Science, University of Freiburg

- Reasoning is one of the core abilities of humans
- Allows us to leverage available information to decide on the best course of action
- Research shows that human reasoning differs greatly from formal (first-order) logics

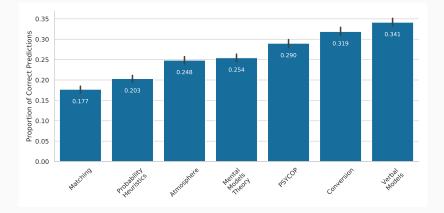
- Traditional goals of modeling:
 - 1. Satisfy psychological effects/phenomena
 - 2. Probabilistically describe population data

• Problem:

Predictions derived from cognitive theories perform poorly in $\ensuremath{\mathsf{prediction}}$ scenarios^1

¹Riesterer et al., 2018

Predictive Performance for Syllogistic Models



Prediction data taken from Khemlani & Johnson-Laird (2012)

Research Question

Is lacking performance due to noise in data or suboptimal theoretical assumptions?

Data-driven methods (neural networks) to empirically investigate upper bounds in predictive performance

- Automatically find and leverage structural patterns in the data
- Data which cannot be captured from the available features should be regarded as noise
- Here, neural networks are not considered cognitive models but tools for evaluation

- Categorical quantified assertions
- Four quantifiers: All, Some, Some ... not, No
- Two premises containing three terms researchers, logicians, professors
- Responses relate end terms (researchers, professors) via quantifier or NVC
- Total of 64 distinct problems with 9 possible conclusions each

Some researchers are logicians Some logicians are professors

What, if anything, follows?

- Rich history of modeling and analysis²
 - Prediction lists available for seven theories
 - Unclear which theory is to be preferred
- Recent evaluations have demonstrated shortcomings in predictive performance³
- $\rightarrow\,$ Establish prediction-based evaluation (preferably on trial-level) as core component of cognitive model evaluation

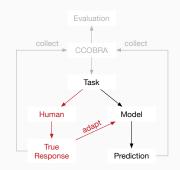
 $^{^2 \}rm Khemlani$ & Johnson-Laird, 2012 $^3 \rm Riesterer$ et al., 2018

Goal of modeling:

Model should simulate the reasoning behavior of individuals.

- Predict specific conclusions instead of lists of possibilities
- Evaluation score based on proportion of correct predictions
- Verify models by performing crossvalidation

- Cognitive Computation for Behavioral Reasoning Analysis (CCOBRA) framework⁴
- Procedure:
 - 1. Iterate over participants in the data
 - 2. Iterate over individual problems
 - 3. Query model for a specific prediction
 - 4. Provide model with true conclusion
- Learning/Fitting Phases:
 - 1. Pre-Training based on training data
 - 2. Adaption based on true conclusions



⁴https://github.com/CognitiveComputationLab/ccobra

- Models:
 - Cognitive Models⁵
 - Neural Networks
 - Statistical Baseline Models
- Dataset: Ragni2016 from CCOBRA
 - *N* = 139
 - Each participant was presented with all 64 tasks

⁵Khemlani & Johnson-Laird, 2012

Cognitive Models

- Atmosphere
- Conversion
- Matching
- Mental Models Theory (MMT)
- Probability Heuristics Model (PHM)
- PSYCOP
- Verbal Models

Neural Networks

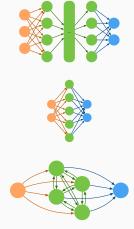
- Multilayer Perceptron (MLP)
- Autoencoder
- Recurrent Neural Network (RNN)

Statistical Baselines

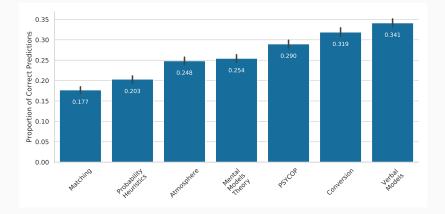
- Uniform guessing
- Most-Frequent Answer (MFA)

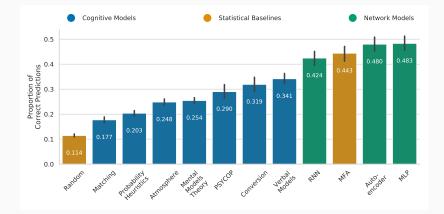
• Adaptive Multi-Layer Perceptron (MLP):

- Problem-response mapping
- Adapts by continuing training
- Denoising Autoencoder:
 - Treats conclusions as reasoner profile
 - Imputes missing input information
 - Adapts by filling up reasoner profile
- Recurrent Neural Network (RNN):
 - Trained on experimental task sequence
 - Leverages sequential effects
 - Not adapted to the individual

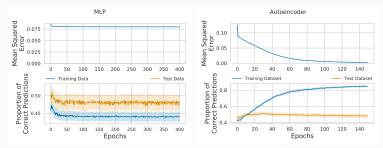


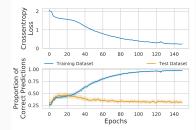
Predictive Accuracy





Network Training Performance





- Cognitive models perform poorly on the accuracy-based prediction task
 - Value of explanations rests on predictive accuracy
 - Shows limited applicability of the current theories
- Lacking performance of the models not entirely due to noise:
 - Neural networks able to better use structure in the data
 - Syllogistic domains still offers potential for future improvement
 - Individual differences exists and can be leveraged (adaptive networks)

Thank You!

References

Khemlani, S., & Johnson-Laird, P. N. (2012). Theories of the syllogism: A meta-analysis. *Psychological bulletin*, 138(3), 427.

Riesterer, N., Brand, D., & Ragni, M. (2018). The Predictive Power of Heuristic Portfolios in Human Syllogistic Reasoning. In: Trollmann F., Turhan AY. (Eds.) *KI 2018: Advances in Artificial Intelligence. KI 2018. Lecture Notes in Computer Science*, vol 11117. Springer, Cham (pp. 415-421).

Code on GitHub:

https://github.com/nriesterer/iccm-neural-bound

