
Implications of Guessing Types in Multinomial Processing Tree Models:
Conditional Reasoning as an Example

Nicolas Riesterer (riestern@cs.uni-freiburg.de)
Cognitive Computation Lab, Georges-Koehler-Allee 79

79110 Freiburg, Germany

Marco Ragni (ragni@cs.uni-freiburg.de)
Cognitive Computation Lab, Georges-Koehler-Allee 79

79110 Freiburg, Germany

Abstract
Human responses in reasoning are sometimes based on guess-
ing which is a cognitive process usually accounted for by ad-
equate cognitive models. In the literature, different types of
guessing have been reported but investigations of their impact
on the overall model performance are rare.
This article focuses on three theories of conditional reason-
ing implemented as Multinomial Processing Trees (Oberauer,
2006). We analyze the impact of the different guessing types
on the raw goodness of fit, on information criteria commonly
found in the literature (AIC, BIC, FIA), discuss the partial in-
fluences of reasoning, guessing, and additional heuristic com-
ponents, as well as assess the impact of guessing on param-
eter estimates. The results indicate that using different types
of guessing can have a reliable impact on the model’s per-
formance and implications about the assumed cognitive pro-
cesses.
Keywords: Cognitive Modeling; Conditional Reasoning;
Multinomial Processing Trees; Guessing

Introduction
Computational modeling has recently gained popularity in a
wide variety of research domains for its capability to evaluate
and compare competing theoretical accounts in a well-defined
manner. In cognitive science and psychology, theories are
now routinely formalized as computational models such as
Multinomial Processing Trees (MPTs; Riefer & Batchelder,
1988; Purdy & Batchelder, 2009). These models are of par-
ticular interest due to their inherent capability of modeling la-
tent processes and have been used in a multitude of research
domains such as memory storage and retrieval, perception,
reasoning, or psychometrics (e.g., Batchelder & Riefer, 1999;
Erdfelder et al., 2009). Even in the case of underspecified or
verbally defined theories, they allow for a profound assess-
ment of underlying assumptions.

Computational modeling is comprised of three phases:
model implementation, model evaluation, and model com-
parison. While methods for model evaluation and compar-
ison are standardized and available in various toolboxes (e.g.,
MPTinR; Singmann & Kellen, 2013), the development of
models still offers considerable freedom to the modeler. In
principle, there are (at least) two computational modeling ap-
proaches: First, cognitive computational models are devel-
oped to formalize (verbally specified) cognitive theories to
evaluate their explanatory power (e.g., Oberauer, 2006). Sec-
ond, the connections between identified cognitive processes
and experimental variables can be systematically manipulated
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Figure 1: General structure of MPT models augmented with a
guessing subtree. A parameter r represents the probability of
entering the reasoning submodel, i.e., the process motivated
by a cognitive theory.

to develop a cognitively grounded theory (e.g., Klauer, Stahl,
& Erdfelder, 2007).

Different goals have different requirements with respect to
the modeling approaches being applied. Theory formaliza-
tion requires the model to be as close to the original the-
oretical specification as possible. This largely prevents the
modeler from incorporating additional assumptions targeted
towards optimizing the performance of the resulting model.
On the other hand, in general cognitive modeling, the mod-
eler might decide on modifying the original theory in order to
account for missing outcomes, or to make the resulting model
comparable to a selection of alternative models with incom-
patible high-level process assumptions.

A model augmentation commonly found in the literature is
a process usually coined “guessing”. While technically repre-
senting a response generation process differing from regular
inference, guessing is often incorporated into models as an al-
ternative strategy to account for missing response categories
in order to enable evaluation on general datasets or compari-
son with other candidate models (cf. Figure 1). Guessing can
be based on different methods such as uniform approaches
assigning equal probability to all outcomes, bias guessing as-
suming a bias for general acceptance of conclusions, or inde-
pendence guessing specifying independent bias probabilities
for individual inferences. Even though including a guessing
component is a common asset in cognitive modeling, discus-
sions of its influence and potential for negatively influenc-
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ing obtained results are rarely found. Furthermore, previous
research showed that sometimes guessing alone can achieve
better performance than when paired with a reasoning part
(Ragni & Tse, 2017). While this previous study evaluated
the contribution of each inference pattern for conditional rea-
soning (with a bias guessing approach), the overall impact of
different types of guessing has not been systematically ana-
lyzed yet.

Our goal is to add to the comprehensible and in-depth anal-
ysis conducted by Oberauer (2006). We extend it by analyz-
ing the impact of different types of guessing on raw model
performance with respect to goodness of fit, and a set of
established information criteria (AIC, BIC, FIA), assessing
the impact of guessing and a heuristically driven system, as
well as evaluating the influence of guessing on parameter es-
timates. While we use the term guessing consistent with the
literature in referring to the additional subtree, this does not
imply that it can only reflect guessing processes and not al-
ternative strategies such as heuristics. Our analysis compares
the effects of three types of guessing: random guessing, a
heuristically guided process and a theoretically motivated ap-
proach.

The article is structured as follows: In the next section
we present our demonstrative domain of conditional reason-
ing and introduce three theories implemented as MPTs by
(Oberauer, 2006). In Section 3, this set of models is aug-
mented with different types of guessing and fit to data in or-
der to analyze the impact of guessing on model performance
and individual parameter estimates. A discussion about the
impact of guessing types concludes the article.

State of the Art
In this section we briefly introduce conditional reasoning as
our demonstrative domain and sketch the set of cognitive the-
ories we base our analysis upon (Oberauer, 2006).

A conditional such as if A then C consists of an antecedent
(here abbreviated by A) and a consequent (here abbreviated
by C). If additional knowledge is given, such as A, then the
consequent C can be inferred from the conditional (Modus
Ponens, MP), for other additional information, such as not-C,
the inference mechanism Modus Tollens (MT) can be applied
to infer not-A. Both mechanisms are correct with respect to
propositional logic. If instead the information C is given, the
Affirmation of Consequent (AC) is sometimes applied by rea-
soners to infer A. If not-A is given the Denial of Antecedent
(DA) can be applied to infer not-C. The last two mechanisms
only make sense if the conditional is interpreted as a bicondi-
tional.

Human reasoners do deviate from the classical logical in-
ferences (e.g., Klauer et al., 2007) and so cognitive theories
have been developed that can better capture the human in-
ference process than purely logical systems. Among them
are the Mental Model Theory (MMT; Johnson-Laird, 1990;
Johnson-Laird & Byrne, 2002) that assumes that human rea-
soners do reason with respect to a mental model of a con-

ditional. A mental model is an interpretation of the given
conditional with the initial mental model assuming that the
antecedent and consequent are both true at the same time.
While performing the reasoning task, other interpretations are
possible and can be derived in a flesh-out process.

For his investigation of conditional reasoning, Oberauer
(2006) implemented a set of models as Multinomial Pro-
cessing Trees (MPTs; Riefer & Batchelder, 1988; Purdy &
Batchelder, 2009). MPTs are a family of probabilistic mod-
els which can be used to model categorical data. Their core
principle is based on the multinomial distribution and the as-
sumption that observations are the product of a series of latent
processes. By defining a tree structure on the set of assumed
latent cognitive processes, MPTs can be used to test hypothe-
ses related to human cognition. Model comparison is usu-
ally performed on the basis of so-called Information Criteria
weighing the complexity of a model against the achieved fit
to experimental data. The most prominent information crite-
ria are Akaike’s Information Criterion (AIC; Akaike, 1974),
the Bayesian Information Criterion (BIC; Schwarz, 1978),
and the Fisher Information Approximation (FIA; Rissanen,
1996).

Oberauer (2006) developed two models following the men-
tal model theory as MPTs: one with directionality (i.e., with
an additional assumption that mental models are processed
from the antecedent to the consequent) and one without this
additional assumption. These models define predictions for
individual patterns on the basis of processes underlying the
MMT account of reasoning, i.e., he presents MPTs that can
predict an individual reasoners’ choice of inference mecha-
nisms from MP, AC, DA, MT.

Apart from MMT, Oberauer (2006) presents three fur-
ther implementations of cognitive theories in form of MPTs:
two variations of the Suppositional Theory (Evans & Over,
2004) which assumes that there are two reasoning processes,
a fast and heuristic and a slower analytic one, as well as
a Dual-Process (DP) approach (Verschueren, Schaeken, &
d’Ydewalle, 2005) which combines inference on the basis of
heuristic probability estimation with MMT.

Analysis of Guessing Types
Method
Guessing is understood as a way to produce answers “when
reasoners are uncertain about the appropriate response but
have to make a response nevertheless” (Klauer et al., 2007).
In this sense, guessing represents an alternative strategy to
reasoning for producing responses. It serves the purpose of
explicitly representing human uncertainty as well as a gen-
eral means of producing answers not accounted for by the
theoretical account for reasoning.

Technically, guessing is a distribution over all possible re-
sponses. Depending on its degrees of freedom, it can rep-
resent true random guessing, or alternative strategies which
may include biases or other strategies of varying complexity.
In the following we investigate the effects of guessing based
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Figure 2: Guessing Subtree. Root node is reached with proba-
bility (1� r). Parameters g1,g2,g3,g4 specify the probability
distribution for reaching the 16 possible outcomes. ¬ indi-
cates that the inference is not applied. This type of guessing
corresponds to the independence model defined in Klauer et
al. (2007).

on a set of three representative strategies taken from recent
literature: Bias Guessing, Independence Guessing, and Uni-
form Guessing.

Bias Guessing. In his original paper, Oberauer (2006) aug-
mented the theoretical accounts of conditional reasoning with
guessing subtrees consisting of a single free parameter g rep-
resenting a bias of accepting any of the four inference types
(MP, AC, DA, MT). In this sense, bias guessing represents a
basic strategy defined by a single probability parameter repre-
senting a reasoner’s bias towards applying an inference with-
out relying on reasoning processes. The MPT representing
this type of guessing can be obtained from Figure 2 by set-
ting the parameters equal: g = g1 = g2 = g3 = g4. By mul-
tiplying the parameters of a certain branch, the correspond-
ing outcome probability is computed. For instance, the pat-
tern (MP, DA, MT) has the probability P((MP, DA, MT)) =
g⇥ (1�g)⇥g⇥g.

Independence Guessing. A different way of handling
guessing has been used as part of the Inference-Guessing
model for conditional reasoning (Klauer et al., 2007). Orig-
inally devised for the Wason Selection task (Wason, 1968),
this model employs a guessing strategy which assigns indi-
vidual probability parameters (g1, g2, g3, g4) to each infer-
ence. In a sense, it extends on bias guessing by introducing
independent biases for each inference increasing its capabil-
ity to adapt to observed data. The MPT submodel for in-

Figure 3: Visualization of the relations between the different
metrics.

dependence guessing is depicted in Figure 2. Pattern (MP,
DA, MT) is assigned the probability P((MP, DA, MT)) =
g1 ⇥ (1�g2)⇥g3 ⇥g4.

Uniform Guessing. Uninformed guessing can be repre-
sented by a uniform probability distribution over the set of
outcomes. In the case of conditional reasoning with 16 differ-
ent inference patterns producing a binary guessing tree, this
corresponds to a fixed g parameter of g = g1 = g2 = g3 =
g4 = 1/2. Each pattern is therefore assigned the probability
P(x) = g4 = 1/16.

Note, that uniform guessing does not relate processing
paths to their corresponding outcomes. Instead it just uni-
formly assigns probability mass to the set of potential con-
clusions. This raises the question which properties of guess-
ing differentiate between guessing and alternative reasoning
strategies. One possibility to define guessing in a clear dis-
tinction from alternative reasoning strategies could be by fo-
cusing on context-dependency. If guessing processes are af-
fected directly by the context of the task being modeled, e.g.,
by the premise information for conditional reasoning, it might
be more accurate to refer to them as (heuristic) strategies.
Arguably, this notion then ties into the framework of dual-
process models (e.g., Evans, 1984).

Results
We analyze the set of models created by combining the con-
ditional reasoning MPTs with the three guessing strategies
on the dataset for “basic conditionals” reported by Oberauer
(2006). This data was originally obtained by conducting an
online study where 343 participants assessed the validity of
conditional inferences. Model fits were computed via MPTinR
(Singmann & Kellen, 2013), a state-of-the-art framework for
evaluating MPT models using the R environment for statisti-
cal computation (R Core Team, 2014). Goodness of fit results
as well as the information criteria AIC, BIC, and FIA are re-
ported as produced by the MPTinR analysis.
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Table 1: Fitting results of the model-guessing combinations and guessing alone (None).

Cognitive Theory Guessing Log Likelihood G2 AIC BIC FIA Parameters

None Uniform -1902.00 1120.90 1120.90 1120.90 - 0
Bias -1856.19 1029.28 1031.28 1035.81 518.82 1
Independence -1495.85 308.60 316.60 334.72 168.26 4

MMT Uniform -1432.72 182.34 190.34 208.46 103.28 4
Bias -1395.82 108.55 118.55 141.20 69.12 5
Independence -1349.92 16.75 32.75 69.00 30.97 8

MMT-Dir Uniform -1403.68 124.27 134.27 156.92 76.03 5
Bias -1364.76 46.43 58.43 85.62 39.79 6
Independence -1346.23 9.37 27.37 68.15 28.33 9

Supp.-Sequential Uniform -1403.45 123.82 135.82 163.00 77.76 6
Bias -1390.26 97.44 111.44 143.15 66.22 7
Independence -1351.76 20.42 40.42 85.73 35.04 10

Supp.-Exclusive Uniform -1461.70 240.30 252.30 279.49 135.54 6
Bias -1454.50 225.90 239.90 271.61 129.96 7
Independence -1349.33 15.57 35.57 80.88 32.35 10

Dual Process (DP) Uniform -1344.32 5.54 19.54 51.26 20.99 7
Bias -1344.32 5.54 21.54 57.79 23.05 8
Independence -1343.21 3.33 25.33 75.17 28.34 11

Table 1 and Figure 3 depict the results obtained from fit-
ting the set of models to the data. Apart from the fits of the
combined model, Table 1 also contains the results produced
by fitting the guessing subtrees alone. Due to the fact that
the theories themselves do not account for the complete set
of possible outcomes for the conditional reasoning task, the
performance metrics without guessing parts could not be de-
termined.

The resulting values illustrate that the choice of guessing
has a substantial impact on the overall model performance.
Depending on the type of guessing, a wide range of values is
obtained. Independence guessing leads to the best perform-
ing models, followed by bias guessing, and lastly uniform
guessing as the worst option when considering optimality of
the fit alone. These results are to be expected as they fol-
low the number of degrees of freedom the guessing strate-
gies add to the model. This is also reflected by the distance
between the results of the different types of guessing. Bias
guessing, which has only one free parameter is much closer to
uniform guessing than independence guessing which features
three free parameters. The only exception to this behavior is
constituted by the Dual-Process (DP) model, which produces
the overall best results and appears to be affected less severely
by guessing. However, the comparatively superior goodness
of fit results and insignificant variation of the three guessing
types suggest that an upper bound of performance is reached.
In consequence, the penalty terms of AIC, BIC, and FIA have
a bigger impact on the information criteria values.

The guessing models by themselves result in the worst ac-

counts for the data. This is not surprising since guessing does
not contain theoretically motivated assumptions about cogni-
tion. Instead, these models represent uninformed strategies
for producing responses to the task being modeled. Still,
when being used as additions to formalized cognitive the-
ories, they are capable of positively influencing the result-
ing model’s performance. By accounting for responses not
matching the underlying theory’s implications, the predictive
power of the theory is enhanced.

Figure 4 illuminates the effects of guessing from the per-
spective of individual parameter estimates. It shows that the
different types of guessing influence the parameter estimates
obtained from the fitting procedure. For instance, when con-
sidering MMT, the a parameter varies between a value of 0.56
for uniform guessing, 0.66 for bias guessing, and 0.26 for in-
dependence guessing. The magnitude of variance observed
shows that guessing needs to be applied cautiously when aim-
ing at interpreting the cognitive processes represented by the
model parameters. However, the plots also illustrate that the
impact guessing has on parameter estimates is dependent on
the model itself. MMT with directionality and the dual pro-
cess model appear to be much less influenced than MMT or
the sequential suppositional model, for instance.

Of particular importance is the parameter r which repre-
sents the probability of entering the reasoning part of the
model instead of relying on guessing for producing a re-
sponse. Considering the values of r, depicted isolatedly from
the other parameters in Figure 5, a considerable influence of
guessing can be observed for most of the models. The reason-
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(a) MMT (b) MMT with Directionality (c) Suppositional Sequential

(d) Suppositional Exclusive (e) Dual Process

Figure 4: Parameter estimates resulting from fitting the set of models with different guessing trees to the data.

Figure 5: Reasoning parameter r resulting from fitting the
theory-guessing model combinations.

ing parameter r differs between 0.73 for uniform and 0.36 for
independence guessing. Put differently, by simply switching
the type of guessing, the underlying theory is 37% less likely
to account for the data. This adds to the observation indicat-
ing that the impact of guessing follows the degrees of free-
dom of the respective strategies. If guessing features larger
numbers of free parameters, it is able to account for larger
proportions of the data, reducing the importance of the actual
reasoning component.

General Discussion
Implementing cognitive theories has become a core aspect of
cognitive science. Apart from the raw goodness of fit met-
rics, interpretability and theoretical merit are essential factors
to judge models by. However, when implementing models,

the need to add assumptions unwarranted by the underlying
theoretical foundation frequently arises. This obfuscates the
true power of the theory and may lead to a distortion of re-
sulting qualitative assessments.

Our results show that even seemingly unintrusive additions
such as the addition of guessing processes not accounted for
by the underlying theory may have unexpectedly high impact
on the overall model performance. A shift in the performance
of the models following the degrees of freedom available in
the guessing trees can be observed. Uniform guessing is not
able to be adapted for an optimal fit to the data resulting in
the most explanatory weight being assigned to the underlying
theory which is reflected by the worst performance values but
a relatively high probability of entering the reasoning part of
the model. In contrast, bias and independence guessing rep-
resent theoretically motivated strategies as alternatives to rea-
soning. By offering one or three parameters, respectively, for
fitting the model, higher levels of performance are achieved
at the cost of larger proportions of the data being accounted
for by guessing.

When evaluating theoretical accounts on the basis of model
implementations, special care needs to be taken to disentan-
gle the original theory’s performance from the influence of
the additional assumptions. Our results illustrate that there
is a fine line between guessing and what must be considered
alternative strategies to reasoning. Even when introducing
additional processing paths based on a single additional pa-
rameter, a hybrid model is formed which produces results that
cannot be attributed solely to the underlying theoretical con-
cepts. By disregarding the need for theoretical justification
due to treating those alternative strategies simply as “guess-
ing”, their potential intricacies, dependencies to the data, and
thus influence on the theoretical foundation are obscured.
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The results of this work can be generalized to other model-
ing tasks. Regardless of the framework in use, the addition of
alternative processing paths to producing conclusions have an
impact on the overall model performance. Without ensuring
that the modifications only result in controlled local effects,
the soundness of the underlying theoretical assumptions can-
not be expected to remain intact. As a conclusion, the role
of the model as a representative instance for a theoretical ac-
count becomes debatable.

Our findings raise the question as to whether parameter-
ized guessing components can be understood as guessing in
the first place. Instead, it might be more appropriate to dis-
tinguish pre-determined probability distributions with no de-
grees of freedom as guessing and parameterized versions as
(sometimes implicit) realizations of dual-process models with
a representation of heuristics. Consequently, guessing might
be better defined in terms of context-independent processes
that do not depend on the presented information. The present
analysis demonstrates the impact of the different types of
guessing on reasoning. It highlights the need for a compre-
hensive theory of guessing.
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