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Abstract
“No Valid Conclusion” (NVC) is one of the most frequently se-
lected responses in syllogistic reasoning experiments and cor-
responds to the logically correct conclusion for 58% of the
syllogistic problem domain. Still, NVC is often neglected in
computational models or just treated as a byproduct of the
underlying inferential mechanisms such as a last resort when
the search for alternatives is exhausted. We illustrate that
NVC represents a major shortcoming of current models for hu-
man syllogistic reasoning. By introducing heuristic rules, we
demonstrate that slight extensions of the existing models result
in substantial improvements of their predictive performances.
Our results illustrate the need for better NVC handling in cog-
nitive modeling and provide directions for modelers on how to
integrate it into their approaches.
Keywords: cognitive modeling; heuristics; syllogistic reason-
ing; no valid conclusion

Introduction
Syllogistic reasoning is one of the core domains in human
reasoning research (for a review see Khemlani & Johnson-
Laird, 2012). It is concerned with gaining insight into the
cognitive processes driving the inference mechanisms for
categorical assertions featuring quantifiers (“All”, “Some”,
“Some ... not”, and “No”) and terms which are inter-related
by two premises. The traditional experimental paradigm
presents participants with problems of the form “All A are B;
All B are C” (substituting A, B, and C with common groups
such as gardeners, musicians, etc.) and usually asks “What
follows?”, i.e., which conclusion can be inferred logically
from the premises (generation task; Morley, Evans, & Han-
dley, 2004). Depending on the arrangement of terms, the syl-
logism is categorized into one of four figures, a property that
was found to have a substantial influence on human infer-
ences (Johnson-Laird & Bara, 1984):

Figure 1 Figure 2 Figure 3 Figure 4

Premise 1 A-B B-A A-B B-A
Premise 2 B-C C-B C-B B-C

For reasons of clarity, syllogistic problems are usually
referred to by abbreviating quantifiers with single upper-
case letters and the figure number: “All” (A), “Some” (I),
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“No” (E), “Some . . . not” (O). The syllogism “All informa-
tive things are useful; Some websites are not informative
things” is therefore referred to as AO2. Possible conclusions
for syllogistic problems combine the end terms A and C via
one of the four quantifiers. Additionally, it is possible to re-
spond with “No Valid Conclusion” (NVC) indicating that the
premises have no valid conclusion in accordance to first-order
logic. Out of the 64 distinct syllogistic problems, 37 are in-
valid (58%), i.e., only NVC can be derived.

Experimental investigations have shown that NVC rep-
resents one of the most frequently selected conclusions
(Khemlani & Johnson-Laird, 2012). Because of this, the
role of NVC in syllogistic reasoning is important. However,
current models of syllogistic reasoning rarely make explicit
statements about NVC. On the extreme, there are heuristic
models which do not possess the capability of generating
NVC at all. On the other hand, models that do integrate NVC
as a conclusion candidate often treat it as a termination cri-
terion when searches for alternatives fail. Currently, there
are no strategies to directly infer NVC responses. Addition-
ally, even when going beyond the level of predictions, mod-
els are unable to account for statistical phenomena related to
NVC responses, such as variations in reaction times (Ragni,
Dames, Brand, & Riesterer, 2019).

In this article, we tackle this problem by proposing a set of
heuristic rules for generating NVC conclusions based on find-
ings from the syllogistic literature. By attaching these rules
to existing models, we show that inadequate NVC handling is
indeed one of the core problems of the current state of the art.
The following text is split into five sections. After introduc-
ing the syllogistic domain of reasoning as well as the current
state of the art in modeling (Section 2), we will analyze con-
temporary models in terms of their capabilities in predicting
a human NVC response (Section 3). Section 4 then takes up
those results and presents alternative strategies for predict-
ing NVC responses. In Section 5 we evaluate the syllogistic
models augmented with the identified strategies for NVC and
finally, in Section 6, discuss our results, illustrate the poten-
tial with respect to improving models, and give directions for
future work in the field of cognitive modeling of human rea-
soning.
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Table 1: Models and their NVC prediction proportions for
valid and invalid syllogisms. For models with multiple pre-
diction candidates for a single syllogism, the ratio of NVC
is used. Model predictions are taken from Khemlani and
Johnson-Laird (2012).

Model Valid Invalid

Conversion 44% 86%
Mental Models Theory (MMT) 14% 30%
PSYCOP 0% 100%
Verbal Models 32% 51%
Atmosphere 0% 0%
Matching 0% 0%
Probability Heuristics Model (PHM) 0% 0%

Related Work
Computational modeling is a central part of today’s research
of human syllogistic reasoning. As of today, at least twelve
theories about syllogistic inferences exist. In a meta-analysis,
Khemlani and Johnson-Laird (2012) found that the theories
have distinct advantages and drawbacks when predicting ex-
perimental data obtained by aggregating individual partici-
pants’ responses. The following paragraphs briefly introduce
the different approaches for which the authors were able to
provide predictions for the 64 syllogisms. They will be used
throughout the following analyses.

The Conversion Hypothesis is an attempt at explain-
ing erroneous conclusions resulting from human reasoning
processes originally introduced by Chapman and Chapman
(1959) and later formalized as a testable model by Revlis
(1975). The hypothesis states that while encoding a syllo-
gistic premise, a conversion operation is applied which swaps
the direction of the categorical expression (e.g., “All A are B”
is interpreted as “All B are A”). As a result, a new syllogism is
produced with conclusions that might be inappropriate for the
original problem (e.g., Revlin, Leirer, Yopp, & Yopp, 1980).
NVC is predicted if the new problem is logically invalid.

The Mental Model Theory (MMT; Johnson-Laird, 1975)
is a cognitive theory which has successfully been applied to
various domains of reasoning (Johnson-Laird & Byrne, 2002;
Khemlani & Johnson-Laird, 2012; Ragni & Knauff, 2013).
It is based on the assumption that inferential mechanisms
operate on mental representations constructed for the given
premises. MMT’s inference process is composed of a series
of phases: model construction, conclusion generation, and the
search for counterexamples. First, an initial mental model is
constructed integrating the information of the premises, i.e.,
the relation between the terms of the premises. Second, a can-
didate conclusion is formulated in accordance to the initial
model. Finally, alternative models consistent to the premises
are constructed in search of a situation in which the conclu-
sion is false (Ragni, Khemlani, & Johnson-Laird, 2014). If
the initial model construction fails, or counterexamples can
be found for all models, NVC is returned.

The Psychology of Proof model (PSYCOP; Rips, 1994) is
a cognitive model of human syllogistic reasoning that claims
deduction as a fundamentally human capability (Khemlani
& Johnson-Laird, 2012). PSYCOP defines a set of psycho-
logically plausible inference rules approximating the human
inferential mechanisms. By applying rules in a deductive
forward-inference fashion as well as an inductive backwards-
inference fashion, a path between premise information and
conclusion is constructed. PSYCOP does not have a guar-
anteed way to conclude NVC. While it supports exhaustive
searches for conclusions and the generation of NVC as fall-
back option, this behavior is not enforced in its original for-
mulation (Khemlani & Johnson-Laird, 2012).

Verbal Reasoner (Polk & Newell, 1995) is an approach
to modeling syllogistic reasoning that assumes that human
inferences are fundamentally verbal. It encodes the premise
information into a mental model that differentiates between
more accessible information (the subject of the premise) and
less accessible information (the object of the premise). By
defining procedures to extract different degrees of interme-
diate implicit knowledge about the reasoning problem, the
model is able to generate conclusions following more or less
complex inferences. The verbal model theory treats NVC as
a last-resort option. If no conclusion can be derived from the
mental model, the verbal reasoner enters a reencoding loop in
search for a solution. NVC is produced when it gives up.

The Atmosphere Hypothesis (Woodworth & Sells, 1935)
is able to account for a portion of errors in human syllogistic
reasoning when compared with formal logics (Revlis, 1975).
It is based on a feature extraction step that identifies whether
the given premise information is positive/negative (“All”,
“Some” vs. “Some not”, “No”) and universal/particular
(“All”, “No” vs. “Some”, “Some not”). By following a com-
bination procedure, the quantifier of the conclusion is deter-
mined. Because it only extracts and combines features based
on quantifiers, the atmosphere hypothesis is not able to pro-
vide information about the direction, i.e., the order of terms
in the syllogistic conclusion, and is not able to generate NVC.

The Matching Hypothesis (Wetherick & Gilhooly, 1995)
reflects a different approach for accounting for errors made in
human syllogistic reasoning. It employs a matching strategy
which states that the conclusion quantifier is equal to the most
conservative quantifier in the premises. Conservativeness in
this sense is defined as a preference order of E > O = I ≫ A
following the estimated number of individuals a quantifier
makes a statement about. Similar to Atmosphere, Matching
is unable to predict NVC, because it always picks a quantifier
from the given premises.

The Probability Heuristics Model (PHM; Chater & Oaks-
ford, 1999) is an approach to modeling reasoning that is
based on the fundamental idea that reasoning relies on heuris-
tics. PHM defines the inferential process via two phases.
First, a conclusion is generated by applying the min-heuristic
selecting the least informative quantifier from the premises
(A > I > E ≫ O). Second, probabilistic entailments can be
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applied generating alternative conclusions based on the min-
heuristic’s result that could probably be true. Next, a third
heuristic, attachment, is applied to determine the order of
terms in the conclusion. Finally, the max-heuristic is applied
to assess the confidence of the conclusion based on the infor-
mativeness of the premises. If confidence is low, the probabil-
ity of returning NVC instead of the solution candidate rises.
Additionally, the o-heuristic is applied which states that O-
responses should be avoided in favor of NVC.

In Khemlani and Johnson-Laird (2012)’s prediction table,
which we use as the source for the models’ predictions, PHM
is reported without an inclusion of the max- and o-heuristic
(Baratgin et al., 2015). While potentially distorting for model
comparisons, this does not affect our evaluation of NVC. The
max- and o-heuristics are attached to PHM’s inference mech-
anisms (min-heuristic, attachment, and probabilistic entail-
ment) in similar spirit to what we propose as general exten-
sions of cognitive models further below.

The present article investigates the theories based on their
NVC prediction capabilities. Table 1 summarizes the mod-
els’ NVC response proportions in accordance to the predic-
tion data reported by Khemlani and Johnson-Laird (2012) for
valid and invalid syllogisms. The table highlights the differ-
ence between the cognitive models. While some models are
unable to predict NVC at all, the other approaches have a
stronger tendency toward responding with NVC for invalid
syllogisms. This behavior is expected due to NVC being the
logically valid response for invalid syllogisms. PSYCOP re-
flects formal first order logic in its NVC response behavior.
Because all valid and no invalid syllogisms have categorical
conclusions, it predicts 0% and 100% NVC, respectively. In
the following analyses, we evaluate the models based on their
ability to predict the most frequently selected responses.

Analysis State of the Art
Modeling Task
In this article, we aim at uncovering the latent potential of
the current state of the art by investigating their prediction
capabilities with a special focus on NVC. Hence, we adopt a
predictive scenario as the core evaluation setting of the fol-
lowing analyses: Given a dataset of reasoning data, we first
compute the most frequent answer (MFA) and assess each
model’s performance by comparing its predictions with the
aggregated response given by the participants.

The dataset used for this article was recorded as an Ama-
zon Mechanical Turk web experiment in 2016 and consists
of N = 139 participants providing conclusions to all 64 syl-
logistic problems, each. Participants were asked to select one
of the nine syllogistic response candidates following from the
premises. After a training phase consisting of four easy syl-
logisms, the remaining task sequence and order of response
options was fully randomized.

The predictions for the model candidates were taken from
Khemlani and Johnson-Laird (2012). This prediction data
does not feature single explicit conclusions for each model

Figure 1: Proportion of model prediction errors (grey) for
the 64 syllogisms. False alarms (dark blue), i.e., incorrect,
and missed NVC predictions (light blue) are represented as
proportions of the prediction error.

and task. Instead, only sets of possible conclusions can be
provided for each model and syllogism. To account for this
in our prediction setting, weighted scores were computed for
the following analyses via S(P,T ) = |P∩T |/|P|, where P and
T denote the sets for predicted and true responses, respec-
tively (e.g., Copeland, 2006).

All materials used for the following analyses are openly
available via Github1.

State of the Art
Figure 1 illustrates the predictive capabilities of the mod-
els in accordance to the prediction table of Khemlani and
Johnson-Laird (2012). The grey bars reflect the proportion of
incorrect predictions on the 64 syllogisms’ MFA responses.
Dark blue and light blue bars denote the parts of incorrect
responses which can be attributed to unwanted and missed
NVC responses, respectively. As an illustrating example,
PSYCOP incorrectly predicts 51% of the syllogisms. About
6% of those errors can be attributed to missed NVC responses
whereas 19% of the errors were due to false alarms.

The plot highlights the difference between the models in
today’s state of the art. As expected, the models which are
unable to predict NVC responses (Matching, PHM, Atmo-
sphere), perform worst. For the remaining models, the gen-
eral performance is better. However, NVC-based errors still
account for the large parts of the incorrect predictions. As a
particularly striking example, more than half of Conversion’s
errors are due to incorrect NVC predictions.

The depicted results highlight the need for a better under-
standing of NVC. In the following, we propose strategies for
predicting NVC based on results from the literature on hu-
man syllogistic reasoning. Since embedding these strategies

1https://github.com/nriesterer/syllogistic-nvc
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Table 2: Change in predictive accuracy (black, first value), misses (lightblue, middle value), and false alarms (darkblue, right
value) of the models’ NVC predictions.

Models PartNeg EmptyStart FiguralRule NegativityRule ParticularityRule

Atmosphere 37.5% -28 8 7.8% -6 2 14.8% -17 15 25.0% -16 0 15.6% -12 4
Conversion 1.6% -2 2 0.8% -1 1 -3.1% -2 8 0.0% 0 0 0.0% 0 0
MMT 28.3% -20.1 6 6.2% -4.4 1.6 11.3% -12.3 12.2 17.5% -11.2 0 11.3% -8.4 2.8
Matching 42.2% -28 8 7.8% -6 2 19.5% -17 15 25.0% -16 0 17.2% -12 4
PHM 39.8% -28 8 7.8% -6 2 17.6% -17 15 25.0% -16 0 16.4% -12 4
PSYCOP 4.2% -4 4 3.1% -2 2 -3.0% -2 13 0.0% 0 0 0.0% 0 0
VerbalModels 11.6% -11.7 5.2 4.2% -3.2 1 3.3% -6.7 8.4 9.1% -5.8 0 4.9% -4.7 2

into the assumptions stemming from the high-level theoret-
ical ideas of the models exceeds the scope of this article,
we focus on formulating the NVC strategies as rules which
can be attached to arbitrary models. If a rule does not pre-
dict NVC, the underlying model is queried. This allows us
to examine the benefits and assess potential shortcomings of
an improved NVC handling in modeling human syllogistic
reasoning. Because our rules are purely additive, we expect
models with high numbers of NVC misses to benefit most
from the proposed strategies. The challenge lies in minimiz-
ing the inevitable increase in false alarms.

Towards a Model of NVC
To tackle the problem of missed NVC responses, we intro-
duce a set of heuristic rules detecting NVC which are based
on different observations.

The first heuristic, the Figural Rule is based on the figural
effect, a core result of syllogistic reasoning research. Early
studies found that the figure of premises induces a reliable
bias on participants’ responses: Figure 1 encourages A-C re-
sponses while Figure 2 leads to higher proportions of C-A re-
sponses (Johnson-Laird, 1975). In a later study it was found
that the syllogistic figure also has an effect on the proportion
of NVC responses (Johnson-Laird & Bara, 1984): NVC is
preferred for syllogisms of Figure 3 and 4. This finding is
transformed into a rule generating the NVC response when-
ever a syllogism of Figure 3 and 4 is encountered. For the
remaining figures, the attached model is queried.

The next set of rules draws from the notion of informa-
tiveness of quantifiers as a criterion for determining NVC.
Informativeness is a driving factor for two models in the cur-
rent state of the art of syllogistic reasoning. The probabil-
ity heuristics model (Chater & Oaksford, 1999) assumes an
informativeness ordering of A > I > E ≫ O based on how
unexpected truth about a statement is conceived by humans.
Matching, on the other hand, introduces the notion of con-
servativeness based on the number of individuals a premise
makes an assertion about: E > O = I ≫ A (Wetherick &
Gilhooly, 1995). Both orders assign the least amount of in-
formation to the negative quantifiers “Some ... not” (O), and
“No” (E). The negativity rule integrates both orders by be-
ing defined on the assumption that the amount of informa-

tion encoded by two negative premises does not suffice to
license a valid conclusion. This rule relates to PHM’s max-
heuristic in the sense that it assumes a threshold for insecurity
with a generated conclusion candidate that is exceeded for E
and O quantifiers. In doing so, it also subsumes PHM’s o-
heuristic. In analogy to negativity, the particularity rule is
defined based on the limited information encoded in the par-
ticular quantifiers “Some” (I) and “Some ... not” (O). They
make assumptions about limited and unspecified sets which
might cause the reasoning process to fail. Finally, we de-
fine a third rule, PartNeg by combining both particularity and
negativity: If the syllogism only consists of quantifiers with
limited information, i.e., does not contain “All”, NVC is pre-
dicted.

The last rule, EmptyStart, focuses on the syllogisms
where information can be propagated transitively through the
premises. This is possible for figure 1, i.e., “A-B, B-C”, or
figure 2, i.e., “B-A, C-B”, which can be converted into figure
1 by swapping the premises and substituting C with A and A
with C. The heuristic assumes that an information propaga-
tion is constructed (A-B-C for figure 1, C-B-A for figure 2).
Inferences can only be drawn if the quantifier relating the two
terms in the beginning of the chain makes an assertion about
a non-empty set of individuals. If this premise features “No”,
i.e., the most conservative premise (Wetherick & Gilhooly,
1995), no information can be propagated through the chain
and NVC is inferred. If we consider syllogism IE1, the chain
A-B-C can be extracted starting with quantifier “Some”. The
reasoner is able to identify a selection of elements from A
which can be annotated as B. The information from the sec-
ond premise can now be integrated easily into the elements
from A. If we consider EI1 on the other hand, the reasoner
is unable to identify an initial set of elements from A. There-
fore, premise 2 cannot be related to elements from A. As a
result, there is a higher chance to respond with NVC.

Analysis

Figure 2 depicts the syllogisms for which the introduced
heuristics predict NVC along with the syllogisms for which
NVC is the most frequent answer (MFA). Comparing the
strategies our results show that different parts of the space
of syllogisms are covered by different rules. For instance,
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Figure 2: NVC Predictions of the individual rules on valid
(left) and invalid syllogisms (right). Syllogisms are abbrevi-
ated with the encoded quantifiers of both premises “All” (A),
“Some” (I), “No” (E), and “Some ... not” (O), and the figure.

negativity and particularity do not predict NVC for valid syl-
logisms, because there only exist invalid syllogisms charac-
terized by being fully negative or particular. Figural on the
other hand generates NVC for large parts of the syllogistic
domain regardless of the validity of the underlying problem.
When compared with MFA, the rules vary in predictive per-
formance. PartNeg is capable of covering large parts of the
invalid syllogisms correctly and only makes few errors for

the valid cases. In contrast, figural’s predictions show a more
substantial difference in performance between valid and in-
valid syllogisms.

More generally, the plot also illustrates that most responses
were not given by following standard logics. This is espe-
cially apparent in the case of the 37 invalid syllogisms where
only 25 (68%) of the MFA responses correspond to NVC.

Integrating NVC into Models
To determine the effectiveness of our NVC rules, we at-
tach them to the original state-of-the-art models and evalu-
ate their change in performance. This is depicted in Table 2.
It presents the raw improvement of the syllogistic models
achieved by attaching the respective NVC rule. Additionally,
the decrease in misses (light blue) and increase in false alarms
(dark blue) are illustrated. In general, larger improvements
(percentages), fewer misses, and fewer false alarms indicate
better performance.

Table 2 draws a convincing picture about the qualities of
the NVC rules. With the exception of the figural rule, all
strategies result in substantial improvements over the stan-
dard models. PartNeg achieves the overall peak performance
improving up to 42.2% when compared to the base model.
EmptyStart has the overall lowest changes in performance
but introduces only few additional errors. As expected, mod-
els which do not generate NVC at all benefit most from the
capability of responding with NVC achieving an improve-
ment of 21.3%, 20.3%, and 20.1% on average across all NVC
rules, respectively. PSYCOP (0.9% on average) and Conver-
sion (-1.4% on average) do not benefit from the additional
NVC rules with Conversion’s performance even decreasing
slightly. Surprisingly though, MMT is improved substantially
by the additional NVC rules (14.9% on average) even though
it already has the capability of generating NVC.

To gain additional insight into the performance of the mod-
els, Figure 3 replicates the introductory plot from Figure 1. It
depicts the errors in the predictions of the models extended
with PartNeg, the overall best NVC rule. Again, the plot de-
picts the proportion of incorrect predictions (grey) as well as
the fractions corresponding to false alarms (dark blue) and
misses (light blue).

The figure illustrates that the attached rule, PartNeg, man-
ages to effectively remove NVC misses from the models’ pre-
dictions. Simultaneously, it achieves this without introducing
substantial amounts of false alarms. Consequently, in combi-
nation with PartNeg, a heuristic rule was found that is able to
nuancedly relate human reasoner’s tendencies towards con-
cluding NVC to the syllogistic quantifiers. The fact that the
improvement in handling NVC caused a substantial increase
in performance for most of the models further strengthens the
claim that NVC is one of the core weaknesses of the current
state of the art in modeling human syllogistic reasoning.

Figure 4 illuminates the qualities of NVC rules on an in-
dividual level. For each model, the values refer to the num-
ber of participants for which a certain rule achieves highest
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Figure 3: Proportion of the prediction errors (grey) achieved
by the models extended with PartNeg, the overall best NVC
heuristic, on the 64 syllogisms. False alarms (dark blue), i.e.,
incorrect, and missed NVC predictions (light blue) are repre-
sented as proportions of the prediction error.

performance. The figure illustrates that while PartNeg is the
overall best rule, there is quite a substantial number of partic-
ipants which can be accounted for better by other rules. This
suggests that NVC response behavior is dependent on inter-
individual differences of reasoning processes.

General Discussion
As the correct response for 58% of syllogisms as well as one
of the most frequently given responses by human reasoners
(Khemlani & Johnson-Laird, 2012), “No Valid Conclusion”
(NVC) is an important response for computational models to
capture.

Our results demonstrate that the current state of the art in
modeling human syllogistic reasoning is lacking the capa-
bilities for handling NVC correctly. While some other ap-
proaches do not feature the ability of producing NVC at all,
even the more complex approaches yield false alarm rates
of up to 25% (Conversion) and misses of up to 30%. The
high miss rates highlight a lack of precision in identifying the
problems where NVC responses are adequate.

We combat these shortcomings by introducing five heuris-
tic rules for predicting NVC based on prominent phenom-
ena and properties of syllogistic reasoning (e.g., figural ef-
fect; Johnson-Laird, 1975; Johnson-Laird & Bara, 1984,
or informativeness of premises; Chater & Oaksford, 1999).
By attaching these rules to the cognitive models taken from
Khemlani and Johnson-Laird (2012), a substantial improve-
ment can be observed for the majority of models. Models
without the capability of predicting NVC could achieve an
increase in performance of up to 20% on average across all
rules. Combined with PartNeg, the overall best NVC rule,
we were able to demonstrate a substantial decrease of misses
across the board. Even though these rules introduce low num-

Figure 4: For each model, the values denote the number of
participants for which the corresponding NVC rules performs
best. In case of ties, the subject is counted for both rules.

bers of additional false alarms, this effect is negligible when
compared to the substantial reduction of misses.

In conclusion, our work contributes to research in the do-
main of syllogistic reasoning both on a theoretical and prac-
tical level. We isolate NVC as one of the core flaws of the
current state of the art in modeling syllogistic reasoning. By
demonstrating substantial improvement when attaching NVC
predictors, we highlight the remaining potential for modelers
to tap into. The next step for cognitive modelers is to inte-
grate these findings into future iterations of their models and
derive additional rules from cognitive theories. With PartNeg,
we provide a first rule which represents a valuable heuristic
candidate for explaining NVC response behavior.

Furthermore, our results show the potential that lies in iso-
lating and improving parts of the problem domain. By high-
lighting their shortcomings, modelers are given the chance to
iteratively improve on their computational models and under-
lying theories. Apart from NVC, another candidate for im-
provement is the conclusion direction. Currently, there exist
models which completely ignore direction as a predictive fac-
tor (e.g., Atmosphere) and others which actively integrate it
into their underlying formalisms (e.g., Conversion).

Still, even though PartNeg captures the majority of MFA
responses, it is not the optimal choice for each individual.
There still is potential left for making better predictions if
the relation between individual reasoners’ characteristics and
their response behavior can be understood. Our results sug-
gest that there is no single rule capable of accounting for all
individuals. Therefore, one goal of future models is to deter-
mine and use discriminative features enabling the detection
of the reasoning strategy most fitting to a specific reasoner.
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