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Abstract

Model evaluation is commonly performed by relying on ag-
gregated data as well as relative metrics for model comparison
and selection. In light of recent criticism about the prevailing
perspectives on cognitive modeling, we investigate models for
human syllogistic reasoning in terms of predictive accuracy
on individual responses. By contrasting cognitive models with
statistical baselines such as random guessing or the most fre-
quently selected response option as well as data-driven neural
networks, we obtain information about the progress cognitive
modeling could achieve for syllogistic reasoning up till now, its
remaining potential, and upper bounds of performance future
models should strive to exceed. The methods presented in
this article are not restricted to the domains of reasoning but
generalize to other fields of behavioral research and can serve
as useful additions to the modern modeler’s toolbox.

Keywords: syllogistic reasoning; neural networks; model
evaluation; upper bounds

Introduction
“What I cannot create, I do not understand”, the famous
quote by Richard Feynman is one of the core maxims of
model-driven research. Only if we are able to capture the
fundamental mechanics of nature, effectively allowing us to
simulate or re-create the associated behavior, we can speak of
having gained true understanding. Translated to the domain of
cognitive science, this quote is a reminder to constantly keep
pushing cognitive models to their limits in order to improve
not only their performance, but ultimately our understanding
of the mental processes they reflect.

Recently, however, voices have surfaced questioning the
merit of current modeling endeavors. For one, there is an
ongoing debate about the role of individual data in modeling.
Critics of the prevailing focus on data aggregation and corre-
sponding population-based models have demonstrated a lack
of group-to-individual generalizability both for experimental
(Fisher, Medaglia, & Jeronimus, 2018) as well as for statistical
research (Molenaar, 2004). They argue that while potentially
useful for insight into typical human behavior, research on
aggregates cannot be used to gain understanding about a
single individual’s cognitive system (Miller et al., 2002).
On the other hand, though undoubtedly related, there is
ongoing discussion about the methodologies used in cognitive
modeling. For example, with the recent efforts to make
Bayesian inference models applicable for the broader research
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community, probabilistic models and corresponding modeling
paradigms (especially with respect to model evaluation and
selection) have seen a surge in popularity (Vandekerckhove,
Rouder, & Kruschke, 2018). However, critics argue that while
ideal for discovering statistical relationships which can be tied
to high-level theoretical assumptions, Bayesian models cannot
be used as algorithmic or process-focused approximations of
cognition (Stenning & Cox, 2006; Fugard & Stenning, 2013).

In this article we wish to add to the ongoing discussion
about the explanatory power of current cognitive models.
We adopt a bird’s-eye view posing the fundamental question
inspired by Richard Feynman’s quote: To which degree are
state-of-the-art models capable of reflecting what we are fun-
damentally interested in—the human mind? We investigate
this for the exemplary domain of syllogistic reasoning, one of
the core fields of human reasoning research.

With a long history of research stretching over 100 years
and a state of the art encompassing at least twelve cognitive
theories (Khemlani & Johnson-Laird, 2012), syllogistic rea-
soning lends itself as a demonstrative domain to investigate the
levels of understanding research has achieved. In this domain,
we define a prediction task querying models for responses to
given syllogistic problems. The final model evaluation is per-
formed by comparing the predictions with the actual human
responses. To determine the absolute quality of models, we
contrast cognitive accounts with data-driven methods from
machine learning, namely a set of neural networks based on
different features of the data. By comparing cognitive models
with the data-driven results, we explore the potential that
remains in the field and determine empirical upper bounds of
performance to set goals of future modeling endeavors.

A syllogism is a form of categorical assertion consisting of
two premises interrelating a set of three terms via quantifiers
(All, Some, No, Some ... not). In experimental settings,
participants are asked to relate the end terms of the premises
(A and C in the example below), i.e., the terms occurring in
only one of the premises:

All A are B
All B are C

What, if anything, follows?

Psychological research has shown that human syllogistic
reasoning does not strictly follow formal logic principles
(Wetherick & Gilhooly, 1995). Instead, past research has



produced various theories attempting to explain the cognitive
principles underlying syllogistic inferences (Khemlani &
Johnson-Laird, 2012). Since the domain is well-defined (tak-
ing the arrangement of terms into account, there are 64 distinct
syllogistic problems and a total of nine possible responses
including “No Valid Conclusion” indicating that the end
terms cannot be related based on the premise information),
syllogisms are an accessible domain for cognitive modeling
to investigate what is assumed to be one of the fundamental
concepts of human reasoning.

The remainder of this article is structured as follows. First,
we introduce the state of the art in modeling human syllogistic
reasoning. Second, we define the predictive modeling task as
the foundation of our analysis and introduce the baseline mod-
els used to put cognitive model performances into perspective.
Finally, we present the results of our analysis and discuss their
implications for modeling syllogistic reasoning in particular
and cognitive science in general.

Related Work
Traditionally, research on human syllogistic reasoning fo-
cuses on investigating deviations between human inferences
and normative first order logic (Wetherick & Gilhooly,
1995). Over the course of time, the phenomena of syllogistic
reasoning matured and were integrated into theories relating
statistical effects such as the figural effect (Bara, Bucciarelli,
& Johnson-Laird, 1995) with assumptions about mental
representations (e.g., in the Mental Models Theory; Johnson-
Laird, 1983) or fundamental principles of cognition (e.g., the
Probability Heuristics Model by Chater & Oaksford, 1999).

A meta-analysis (Khemlani & Johnson-Laird, 2012)
compiled a list of twelve contemporary theories along with the
corresponding sets of derived conclusions for each syllogism.
By comparison with a set of “liable pooled conclusions”, i.e.,
a dichotomization based on which responses were selected
by at least 16% of participants, they performed an analysis
assessing how well individual theories were able to predict
human responses. Employing classification metrics (hits,
misses, correct predictions), the authors concluded that no
single model clearly outperformed the others. Instead they
found that depending on the metric of choice, all models
exhibited distinct strengths and weaknesses rendering a
conclusive ordering based on performance difficult.

More recent work leveraged the differences in predictive
properties of heuristics for syllogistic reasoning by con-
structing portfolios exploiting the strengths while avoiding
the weaknesses of individual models (Riesterer, Brand, &
Ragni, 2018). We showed that the predictive accuracy of
the resulting composite model (43%) clearly outperformed
individual models (ranging between 37% and 18% for the best
and worst cognitive model, respectively). In contrast to the
meta-analysis discussed above, we directly based our analysis
on individual responses instead of aggregates. The resulting
accuracies demonstrated lacking capabilities of heuristic
models when confronted with an individual prediction task.

This shift in perspective from modeling population data
via pooled conclusions to modeling individual responses is
motivated by the fact that the core objective of modeling
human reasoning is the development of functionally equiv-
alent computational formalisms capturing the essence of the
processes driving human inferences. In today’s research on
syllogistic reasoning, process-driven performance analyses
directly on the level of individuals are scarce. Especially
in light of recent work in statistics showing that group-to-
individual generalizability is limited if not impossible for
parts of psychology and other empirical fields of science
(Molenaar, 2004; Fisher et al., 2018), modeling individual
data directly will become unavoidable.

In the following analyses, we investigate the potential
remaining in the field by contrasting cognitive models with
data-driven approaches in a prediction scenario focusing on
individual human responses. It is important to note that the
following work is not targeted towards model assessment in
the traditional sense, but a comparison with methods that are
expected to yield an upper bound for predictive performance.

Method
In this section we present the core modeling task of this
article: predicting individual responses for given syllogistic
reasoning problems. As the foundation for our evaluation we
rely on a dataset supplied with the Cognitive Computation
for Behavioral Reasoning Analysis (CCOBRA) Framework1

consisting of 139 participants responding to the full set of 64
syllogisms by selecting which of the nine conclusion options
could be followed from the premises. The model evaluation
was performed in a leave-one-out crossvalidation setting
where for each subject to be predicted, the models were fitted
using the remaining 138 participants as training data. All code
and data required for the analyses are made public on GitHub2.

The Predictive Modeling Problem
The modeling problem is defined as the task to generate a
conclusion for a given syllogism. More formally, the goal is to
find a function f : X → R which transforms a problem input
x ∈ X into a response r ∈R , where X and R correspond to the
sets of 64 syllogistic problems and nine possible conclusions,
respectively. Models are finally evaluated based on their pre-
dictive accuracy, i.e., the proportion of correct predictions on a
given evaluation dataset. In sum, the modeling problem can be
formulated in terms of an optimization problem for a predic-
tion function f (x) dependent on input x (syllogistic problem).
The optimization procedure maximizes an accuracy score h,
e.g., hits, dependent on the prediction f (xt) for problem xt
and target output yt (human response) where t identifies the
position in the experimental sequence for a dataset of size N:

max
f

1
N

N

∑
i=1

1
Ti

Ti

∑
t=1

h( f (xi,t |xi,1, ...,xi,t−1;yi,1, ...,yi,t−1),yi,t)

1https://github.com/CognitiveComputationLab/ccobra
2https://github.com/nriesterer/iccm-neural-bound



This problem definition has properties which are ben-
eficial for cognitive modeling. First, it relies on a highly
descriptive performance metric with a close connection to
modern machine learning (error reduction). Consequently,
good performance results (evaluated on unseen test data)
are likely to translate to a sensible estimate of performance
in application contexts. Second, the performance metric
stretches over a clearly defined range of values between all
misses (0%) and perfect prediction (100%) allowing for an
assessment of absolute performance. The higher the score, the
better a model is capable of approximating human reasoning
behavior. The modeling task can be considered solved
only if performance converges towards 100%. Finally, and
arguably most importantly, it directly uses the data recorded in
experiments without introducing the risk of misinterpretation
due to making statements about populations or “average”
reasoners which might not even exist (Miller et al., 2002).

Cognitive Models for Syllogistic Reasoning

As a starting point for our analysis, we relied on the prediction
table reported in Khemlani and Johnson-Laird (2012, Table 7).
To compile this list of predictions, Khemlani & Johnson-Laird
went to great lengths collecting the most up-to-date versions
of the respective approaches while maintaining close commu-
nication with the theories’ inventors or current maintainers.

Unfortunately, however, the simplicity stemming from
organizing model predictions in such a static tabular form fails
to capture the intricacies of some methods (e.g., Baratgin et
al., 2015). As a result, one should treat these representations
as baselines for cognitive models’ performances instead of
comprehensive accounts reflecting their theoretical merit.
Still, since prediction-oriented implementations of syllogistic
models are rare, and custom implementation introduces the
risk of integrating incorrect assumptions stemming from mis-
conceptions about a theory’s intent, we rely on the data from
Khemlani and Johnson-Laird (2012) to obtain a conservative
estimate of the general performance of cognitive models.

Baseline Models for Syllogistic Reasoning

In order to put the predictive performances of cognitive mod-
els into perspective, we introduce a set of baseline models.
The Random model assumes a uniform distribution over the
nine syllogistic responses. When queried for a response, one
out of the nine options is randomly sampled from a uniform
distribution with probabilities of 1/9. This model serves as a
random baseline all models are expected to exceed.

On the upper end of the performance spectrum, we provide
the Most-Frequent Answer (MFA) model which computes
the response distribution per syllogism from given training
data. Predictions are generated by returning the response
with highest probability mass (ties are resolved by uniform
sampling). Since the predictive modeling scenario forces
models to generate a single response to a given syllogism, the
MFA is the optimal strategy when no information about the
individual reasoner is provided.

Neural Models for Syllogistic Reasoning
To answer the question about remaining potential in the field
of human syllogistic reasoning we need to provide upper
bounds of performance. Since it is not trivially possible
to quantify the numerous noise components in the data
which stem from inconsistent responses or highly individual
inference strategies, we focus on providing empirical upper
bounds obtained from data-driven methods from machine
learning. While not offering explanatory insight, the resulting
accuracies give an indication about which proportion of the
data can be successfully predicted by following the structural
properties of the data. In particular, we introduce three neural
networks focusing on three different perspectives of the
predictive modeling problem. Even though neural networks
are severely limited with respect to providing high-level
explanation for cognitive processes, they have proven to be ca-
pable of achieving high levels of performance over the course
of the last years and are suitable candidates for obtaining
information about the potential remaining in the field.

The first neural network model is a Multilayer Perceptron
(MLP), a standard feed-forward neural network featuring
a topology of 12-256-256-9, i.e., a twelve-dimensional
input consisting of three blocks of four bits each for the
onehot-encoded quantifiers and figure3, which is fed into two
hidden layers of dimensionality 256 equipped with rectified
linear activation units, and finally into the nine-dimensional
output layer which indicates the generated response. The
model is initially trained by providing syllogistic problems
and corresponding human responses, and is optimized using
the Adam optimizer (Kingma & Ba, 2014) with mean squared
error as the loss function. After a prediction is obtained, the
model is supplied with the true response in order to allow for
an adaption to individual reasoning processes. This adaption
step is realized by training the model for an additional epoch
using the new datapoint.

Second, a Recurrent Neural Network (RNN) is employed,
which explicitly integrates temporal dependencies into the
conclusion generation process (for a conceptual introduction
see Elman, 1990). The model features a 12-64-64-9 topology
consisting of the twelve-dimensional inputs, two recurrent
Long Short-Term Memory (LSTM) layers (Hochreiter &
Schmidhuber, 1997), and the nine-dimensional outputs.
Again, the model is trained using Adam, but uses categorical
entropy as the error function (Deng, 2006). This model does
not incorporate inter-individual differences. However, by
actively modeling the task sequence, it is technically able to
identify sequence effects which may be beneficial features for
the prediction generation process.

Finally, a Denoising Autoencoder is applied which frames
the predictive modeling problem as a reconstruction task. Sim-
ilar to the domain of image restoration in which autoencoders
have successfully been applied (Xie, Xu, & Chen, 2012),
we supply the model with incomplete data about a reasoner.

3E.g., “All A are B; All B are C” is (1,0,0,0,1,0,0,0,1,0,0,0),
“Some B are A; Some B are not C” is (0,1,0,0,0,0,0,1,0,0,1,0)
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Figure 1: Predictive performance of the models for human syllogistic reasoning. Cognitive models are depicted in blue, baseline
models in orange, and neural networks in green. Error bars denote 95% confidence intervals.

The goal of the model is to correctly fill in the blanks. This
model is implemented as a 576-2000-576 network featuring a
576-dimensional input obtained by concatenating the onehot
encoded responses of the 64 syllogistic problems. As such the
inputs represent an individual reasoner’s profile. In the hidden
layer, this profile is expanded to a high-dimensional space in
which relationships between the input dimensions become
explicit. From this intermediate representation, the original
input can be decoded again. During training, the model is
presented with input vectors manipulated by setting values
to zero. By training the model to approximate an identity
function between noisy inputs and complete outputs by mini-
mizing the mean squared error via Adam, it learns to associate
the available information in a way enabling reconstruction of
missing values. Over the course of the model evaluation, the
autoencoder collects the individual’s responses in the adaption
step using completing the originally empty reasoner profile.
Over time, it leverages the growing information about the
individual continuously improving its predictive accuracy.

Results
Predictive Accuracies
The general evaluation results are depicted in Figure 1. The
image shows that all models exceed the random model’s
predictive accuracy of 11% attesting the ability of models
to capture the most basic properties of human syllogistic
reasoning. The next block of models encompasses the entirety
of the cognitive models spanning a range from 18% to 34%.
Verbal Models, the best cognitive model, is followed by a sub-
stantial gap of performance to the RNN and more importantly
MFA, the model always responding with the conclusion most
frequently occurring in the training dataset. This constellation
of model performances has a major implication for the
state of the art in modeling syllogistic reasoning: There is
considerable potential left to improve models even without
taking inter-individual differences into consideration.

Going beyond MFA, the adaptive neural networks (autoen-
coder and MLP) demonstrate a basic capability to capture
individual reasoning patterns and exploiting them to boost
predictive accuracy. However, within this family of models,

differences in performance emerge. Relying on temporal
dependencies, the RNN model achieves the lowest accuracy
scores falling even short of MFA. Reasons for this could be
manifold ranging from the application of an unsuitable model
topology to problems emerging from the limited amount of
training data. However, a more data-centric argument could be
that by increasing the data complexity due to the integration of
a temporal axis, the models are presented with a problem that is
much more difficult to learn than the basic syllogism-response
transformation is. As a result, temporal dependencies, or more
precisely sequence effects (Aczel & Palfi, 2016), cannot be
recognized and leveraged to boost the predictor’s accuracy.

The autoencoder which transforms the modeling problem
into a reconstruction task achieves higher accuracies than
the RNN exceeding the MFA strategy. It shows that the
treatment of responses as some form of reasoning profile is a
suitable representation to base predictors on that surpass the
application of the MFA strategy.

Finally, the MLP achieves the highest accuracy overall
(48%). It demonstrates that an integration of adaption to indi-
vidual properties of cognition via continuous re-training with
the newly obtained information can be successfully applied to
boost model performance. This approach is not exclusively
tied to neural network approaches but should generalize to ar-
bitrary parameterized models which are fitted to training data.

Training Performance
Analyzing the reasons causing networks to perform poorly on
data is a difficult task (Lee, Agarwal, & Kim, 2017). To rule
out a network’s inability to learn the fundamental properties
of the syllogistic reasoning data, we investigate the training
procedure illustrating accuracy progression on the training
and test data per training epoch.

The accuracy progression of the network models during
training is depicted in Figure 2. The blue and orange lines
represent the mean accuracies (with the shaded band reflecting
the 95% confidence interval) on the training and test datasets,
respectively. For the RNN, the rise of the training dataset
accuracy beyond 90% suggests that, in principle, the network
is able to capture the properties of the training data. However,
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Figure 2: Training progression of the RNN and the autoencoder and MLP. The top plots depict the progression of the raw loss
metric used for network optimization. Bottom plots represent the progression of prediction accuracy on training and test data.

the fact that the performance on the test data only rises for a
short duration in the beginning of the training process indicates
that the learned patterns cannot be generalized successfully to
the test instances. The center plot for the autoencoder model
paints a similar picture. Even though the effects of overfitting
are not as dramatic as for the RNN, training accuracy is clearly
improved while damaging the network’s generalization
capabilities to the test data. An alternative explanation for the
superiority of the autoencoder could be that information about
individual reasoners are more important for the prediction
process or more directly related to specific responses. Finally,
the MLP model, despite its predictive capabilities, shows the
least amount of learning behavior. After a quick initial bump,
the model drops in performance almost instantly and remains
constant for the remainder of training. This is most likely due
to the limited and inconsistent input and target data. Since in
the case of the RNN and autoencoder each training example
is high-dimensional and directly incorporates inter individual
differences, it is unlikely to observe inconsistencies, i.e.,
different output for the same input. In contrast, the MLP
is fed with 12-bit vectors representing syllogistic problems
and produces response predictions for individuals. Since
individuals respond differently to the same problems, this data
is highly inconsistent and forces the model to adopt a strategy
similar to MFA in which an average reasoner is approximated.
Classical overfitting is not possible in this scenario.

The observed training performance leads to two conclu-
sions. On the one hand, human syllogistic reasoning appears
to follow systematic patterns, which, to some degree, can
be leveraged by data-driven methods. The fact that both the
RNN and autoencoder are able to learn to fit the training data
up to nearly 100% additionally suggests that inconsistencies
in the given sequence data (RNN) and reasoner profiles
(autoencoder) are minimal. On the other hand, the raw
training capabilities of the networks do not generalize well
to unseen data. Even though the accuracy on the test data is
substantially higher when compared to cognitive models, the
training progression shows quick stagnation. Reasons for this
could be numerous ranging from problems with respect to
data complexity, informational content, or the small size of

the dataset used (138 training instances).
In sum, the results show that a current upper bound in per-

formance can be located at a predictive accuracy of roughly
50%. The fact that cognitive models fall significantly lower
with a maximum of 35% highlights the potential remaining
in the field. Even if the current focus on aggregate evaluation
of models is continued, the models should be able to arrive at
MFA’s performance (44%). The network models demonstrate
that by integrating assumptions about individuals even higher
predictive accuracies can be achieved. However, even data-
driven neural networks stagnate shortly after MFA. While this
could be due to technicalities (e.g., network topologies or opti-
mization methods), it could indicate that the purely response-
focused data is approaching an upper bound of predictability.

General Discussion
We introduced a predictive modeling task to shift the focus of
cognitive model evaluation from relative model selection to a
form of model assessment based on absolute performance, i.e.,
predictive accuracy. In the demonstrative domain of syllogistic
reasoning we illustrated that the current state of the art exhibits
shortcomings with respect to the quality of model predictions.
Without the intention of uncovering individual flaws of spe-
cific models, our analysis showed that at most 34% of our data
could be successfully predicted by cognitive models. Espe-
cially when compared to baseline strategies such as responding
with the most frequently chosen answer in the training dataset
(MFA), which manages to achieve an accuracy of 44%, this
performance is worrisome. For application in real-world sce-
narios such as in human-agent interaction, syllogistic models
are far from being ready for deployment. Even if these theories
are, in theory, able to account for core phenomena and statis-
tical effects of syllogistic reasoning, they are of limited use if
their assumptions cannot be generalized to useful predictions.

The lingering question is how much potential is left in the
domain for future cognitive models to tap into. We introduced
a set of neural network models focusing on different proper-
ties of the data. Since neural networks are known for being
highly capable function approximators, we expected them to
provide an upper bound of performance future generations of



cognitive models should be expected to achieve. Our results
show that the networks were able to significantly outperform
the cognitive models arriving at predictive accuracies of up to
almost 50% for the adaptive MLP, the overall best predictor.
Two of the networks, MLP and the autoencoder were able
to leverage information about an individual’s reasoning pro-
cesses to a point that allowed them to surpass MFA. Finding
optimal ways to integrate these inter-individual differences
into models of cognition is key for achieving high accuracies.
The discussion about which features allow for inter-individual
differentiation has already begun (Bara et al., 1995; Stenning
& Cox, 2006) and should become a central focus of future
research in cognitive modeling.

In conclusion, our work illustrated that cognitive models
for syllogistic reasoning have potential left for improvement.
Currently, the state of the art is unable to reflect the processes
underlying human syllogistic reasoning adequately. However,
even if they manage to improve, without adjusting the mod-
eling task to focus on individual responses, they will get stuck
at the levels of MFA. The network models demonstrate that
trivial individualization in the form of training continuation
(MLP) is technically successful but does not lead to substantial
improvements over MFA. Rather, future models and cognitive
theories should integrate inter-individual differences into their
core mechanics to give rise to the next level of cognitive mod-
els exhibiting properties useful for research (explainability)
and application (predictive accuracy) alike.

We strongly feel that the discussed shortcomings originate
from a prevailing focus on relative model evaluation and
selection as well as statistical analyses and are not limited
to the domain of syllogistic reasoning but could potentially
generalize to other domains of cognitive modeling. As such,
evaluations in terms of absolute performance scores such
as predictive accuracies should be added to the toolbox of
modelers in order to paint a more comprehensive picture about
the capabilities of individual models.
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