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Abstract

The prevailing focus on aggregated data and the lacking group-
to-individual generalizability it entails have recently been iden-
tified as a major cause for the low performance of cognitive
models in the field of syllogistic reasoning research. This arti-
cle attempts to add to the discussion about the performance of
current syllogistic reasoning models by considering the param-
eterization capabilities some cognitive models offer. To this
end, we propose a model evaluation setting targeted specifi-
cally toward analyzing the capabilities of a model to fine-tune
its inferential mechanisms to individual human reasoning data.
This allows us to (1) quantify the degree to which models are
able to capture individual human reasoning behavior, (2) ana-
lyze the efficiency of the parameters used by models, and (3)
examine the functional differences between the prediction ca-
pabilities of competing models on a more detailed level. We
apply this method to two state-of-the-art models for syllogistic
reasoning, mReasoner and the Probability Heuristics Model,
analyze the obtained results and discuss their implication with
respect to the general field of cognitive modeling.

Keywords: cognitive modeling; syllogistic reasoning; mental
models; probabilistic heuristics model; individualization

Introduction
Analyzing aggregated representations of data (e.g., response
distributions) and interpreting the results thereof allows re-
searchers to minimize noise and other sources of adversar-
ial variance which may obscure the actual effects of inter-
est (e.g., Eid et al., 2015). This is one of the reasons why
aggregated, or group-based, analyses of data have tradition-
ally been the standard procedure to investigate experimen-
tal data (e.g., in form of statistical hypothesis testing). Re-
cent studies, however, criticized the use of aggregation in
empirical sciences by demonstrating lacking generalizabil-
ity of group-based results to the individual level (Fisher et
al., 2018). Rekindling the long-standing controversy about
group-to-individual generalizability (e.g., Molenaar, 2004),
they warn that by disregarding inter-individual differences,
researchers might fail to accurately describe the natural pro-
cesses in question and risk arriving at misleading results
(Fisher et al., 2018).

One domain in which problems with respect to group-
to-individual generalizability have been surfacing recently
is syllogistic reasoning (e.g., Riesterer et al., 2019), one
of the core domains of deductive reasoning research. Syl-
logisms are quantified statements (featuring the quantifiers
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“All”, “Some”, “No”, and “Some ... not”) of the following
form:

All A are B
All B are C

What, if anything, follows?

A syllogism consists of three terms (A, B, and C). The mid-
dle term (B) occurs in both premises and is used to connect
their informational content. The end terms (A, C) only occur
in one of the premises and denote the categories whose rela-
tionship is to be determined via deductive inference. In total,
there are 64 distinct syllogistic problems with nine possible
responses each, eight of which are obtained by connecting
both end terms in either direction (A-C, C-A) via one of the
four quantifiers, and “no valid conclusion” (NVC) to indi-
cate that no logically valid response can be derived from the
premises.

With a long history of research focusing on aggregations
such as response distributions, syllogistic models were con-
sidered to provide reasonable explanations of human reason-
ing behavior (Khemlani & Johnson-Laird, 2012). More re-
cent evaluations subjecting the traditional syllogistic models
to individual response data found that individuals differ sub-
stantially from the “average reasoner”, i.e., the response be-
havior obtained from the most frequent answers, the models
tried to capture (Riesterer et al., 2019). However, by eval-
uating general predictions of models (as reported in Khem-
lani & Johnson-Laird, 2012) on individual human responses,
these evaluations focused on investigating the overall group-
to-individual generalizability of models and therefore disre-
garded the fact that at least two of the cognitive models of-
fer parameterization capabilities. Intended to fit models to
groups of reasoners (e.g., Khemlani & Johnson-Laird, 2016),
the parameters should theoretically allow the models to be
fine-tuned to the response behavior of individuals. This en-
ables us to determine how well the models’ assumed cog-
nitive processes align with the inferential mechanisms em-
ployed by human reasoners.

In this article, we investigate the individualization capabil-
ities of parameterized models for human syllogistic reason-
ing. To this end, we propose a model evaluation setting that
aims at measuring a model’s ability to “cover” the response
behavior of individual reasoners, i.e., the ability to provide
a specification of the reasoner in terms of its parameteriza-
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tion (e.g., Farrell & Lewandowsky, 2018). In this setting,
we exemplarily evaluate two state-of-the-art models for syl-
logistic reasoning, mReasoner (Khemlani & Johnson-Laird,
2013) and the Probability Heuristics Model (Chater & Oaks-
ford, 1999), analyze the obtained results and discuss them
with respect to their implications for the field of syllogistic
reasoning research as well as cognitive modeling in general.

Theoretical Background
For over 100 years, researchers have contributed to the field of
syllogistic reasoning research (starting with Störring, 1908).
Since then, in its intent to provide accurate descriptions and
formalizations for the human inferential processes, the field
has generated twelve major cognitive theories (for a review,
see Khemlani & Johnson-Laird, 2012) as well as various
other models (e.g., Riesterer et al., 2019; Brand et al., 2019;
Dietz Saldanha & Kakas, 2019).

The ability of the prevailing twelve theories of syllogis-
tic reasoning to predict significant human response patterns
was evaluated in a comprehensive meta-analysis (Khemlani
& Johnson-Laird, 2012). Khemlani & Johnson-Laird (2012)
collected datasets obtained from psychological experimenta-
tion and aggregated them by determining which of the con-
clusion options were considered “liable”, i.e., given by more
than 16% of the participants. From their analysis, the authors
concluded that while most of the theories give fairly accurate
response predictions (71%-84%), the theories differed with
respect to their proportions of hits and correct rejections mak-
ing it difficult to determine an overall best theory of human
syllogistic reasoning.

More recent studies found that when subjecting the same
models to the task of predicting individual human responses
instead of aggregations, accuracies drop to values below 35%
(Riesterer et al., 2018, 2019). Instinctively, one might have
hoped to dismiss this issue as an effect of inconsistencies
and noise that may affect the response pattern of an individ-
ual reasoner. However, the model obtained from predicting
the response most frequently selected by participants (most-
frequent answer, MFA) substantially outperformed the pre-
dictive capabilities of models (by 10%) suggesting general
flaws in their inferential mechanisms. Moreover, by training
data-driven machine learning models on syllogistic response
data, it could be shown that individual patterns of syllogistic
reasoning exist and can be leveraged to reach higher levels
of performance surpassing the MFA (Riesterer et al., 2019).
Since the MFA represents the upper bound of performance
models disregarding inter-individual differences can possibly
achieve, these results illustrate the potential that still remains
in the field.

These past evaluations of cognitive models attempted to
provide an analysis of their group-to-individual generalizabil-
ity; they did not leverage the parameterization possibilities
some models offer. Consequently, the results do not yet im-
ply that the underlying theories are generally unable to ac-
commodate individuals. They rather suggest that the iconic

model predictions derived from the theories do not directly
reflect the reasoning behavior of individuals. Unfortunately,
though, individualization capabilities were not in the focus
of most traditional approaches to modeling human syllogistic
reasoning. As a result, only two of the syllogistic models are
available as formalisms offering a parameterization for their
underlying inferential mechanisms: mReasoner (Khemlani &
Johnson-Laird, 2013) and the Probabilistic Heuristic Model
(Chater & Oaksford, 1999).

mReasoner
mReasoner (Khemlani & Johnson-Laird, 2013) is a cogni-
tive model that follows the Mental Model Theory (MMT) of
reasoning (e.g., Johnson-Laird, 2010). At its core, MMT as-
sumes that reasoners construct mental representations of the
information contained in the premises by instantiating a set of
symbolic entities, which each can be assigned to one or more
of the syllogistic terms in accordance to their premise quan-
tification. From the initially constructed model, a first conclu-
sion candidate can be drawn and subsequently validated via
a search for counterexamples that checks for inconsistencies
with the input premises. If a counterexample is found, the
mental model is corrected and the inferential process starts
anew until a valid conclusion is found or inference is aborted
by concluding NVC.

mReasoner was developed as a LISP-based program1 that
formalizes the theoretical assumptions of MMT by relying
on a set of four parameters (e.g., Khemlani & Johnson-Laird,
2016): λ ∈ (0,8], ε ∈ [0,1], σ ∈ [0,1], and ω ∈ [0,1] (for a
summary, see Table 1).

λ specifies the size of the initially constructed mental
model by parameterizing a Poisson distribution from which
a number of entities is drawn to represent the premise infor-
mation. The entities are then assigned to the syllogistic terms.
For this step, ε specifies the probability to which the degree
of completeness of the constructed model is determined. Low
values entail that the premise information is only partially re-
flected by the entities in the constructed model which is one
of the mechanisms making the derivation of logically invalid
conclusions possible. σ denotes the propensity of mReasoner
to engage its search for counterexamples and ω specifies how
to continue after a counterexample is found. With the proba-
bility of ω, the conclusion quantifier is weakened and a new
search for counterexamples starts. Otherwise, NVC is con-
cluded.

Probability Heuristics Model
The Probability Heuristics Model (PHM; Chater & Oaksford,
1999) shifts the focus of inference away from logic valid-
ity by proposing a set of simple heuristics that approximate
probabilistically valid, or p-valid (Adams, 1996), inferences.
PHM relies on three generative heuristics (G1-G3), which are
used to propose a candidate conclusion that is either accepted
or rejected by two test heuristics (T1, T2).

1github.com/skhemlani/mReasoner
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Table 1: Parameters of mReasoner (Khemlani & Johnson-Laird, 2016) and PHM (Chater & Oaksford, 1999) as per the imple-
mentations used in the analysis along with their ranges (possible values in the case of PHM) and summarizing descriptions.

Parameter Range Description

mReasoner
λ (0,8] Maximum number of entities in the mental model.
ε [0,1] Completeness of the model.
σ [0,1] Propensity to engage the search for counterexamples.
ω [0,1] Likelihood to weaken conclusion candidates.

Probability Heuristics Model
p ent {0,1} Decides whether min-heuristic or p-entailment generates conclusion.
conf A {0,1} Confidence based on max premise quantifier “All”.
conf I {0,1} Confidence based on max premise quantifier “Some”.
conf E {0,1} Confidence based on max premise quantifier “No”.
conf O {0,1} Confidence based on max premise quantifier “Some ... not”.

The min-heuristic (G1) defines the quantifier of the con-
clusion to be the quantifier of the least informative premise.
Chater & Oaksford (1999) define the ranking of informa-
tiveness as “All” > “Some” > “No” > “Some ... not”. P-
entailment (G2) proposes the statement that probabilistically
follows (p-entails; Chater & Oaksford, 1999) from the min-
heuristic candidate as an alternative conclusion candidate for
the syllogistic problem. As an example, for the min-heuristic
candidate “All A are C”, the p-entailed conclusion would be
“Some A are C”. Attachment (G3) finally specifies the order
of terms by postulating that if the least informative premise
begins with an end-term, it is used as the subject of the con-
clusion. Otherwise, the end-term of the most informative
premise is used.

After the initial conclusion candidate is determined, the
max-heuristic (T1) postulates that a reasoner’s confidence in
this conclusion is proportional to the informativeness of the
most informative premise. In consequence, if this premise
uses uninformative quantifiers, the likelihood of the reasoner
to reject it and respond with NVC is increased (Copeland &
Radvansky, 2004). Similarly, the O-heuristic (T2) states that
conclusions featuring the quantifier “Some ... not” are to be
avoided because of their uninformativeness (Chater & Oaks-
ford, 1999).

The parameters of PHM serve the purpose to provide a
specification of the behavior observable in groups of reason-
ers (see Table 1). As such, p ent specifies the probability
of p-entailment use for deriving an alternative conclusion to
what is proposed by the min-heuristic, and conf A, conf I,
conf E, and conf O represent the confidences in the max-
heuristic quantifiers “All”, “Some”, “No”, and “Some ... not”,
respectively. The probability to conclude NVC instead of
the candidate generated by the min-heuristic or p-entailment
scales proportionally with these confidence values (Copeland
& Radvansky, 2004).

Method

The goal of our analysis is to determine the degree to which
cognitive models are capable of capturing the response pat-
terns of individual human reasoners. To pursue this objec-
tive, we propose an evaluation setting for cognitive models
that puts individuals into the focus of attention. It builds on
the idea that parameters of cognitive models indicate proper-
ties of the assumed inferential mechanisms: given response
data of a human reasoner, we search for a model parameter-
ization minimizing its prediction error. From this, we obtain
parameter values reflecting the inferential mechanisms of the
reasoner. The resulting fits allow for an in-depth analysis of
the model’s ability to capture individual reasoning behavior.

The scores obtained from coverage analysis essentially re-
flect goodness-of-fit (GOF) measures which focus on the ca-
pability of accommodating for individuals in terms of model
parameters. While there is consensus in the recent litera-
ture that an overreliance on GOF may adversarially affect
model selection (e.g., Roberts & Pashler, 2000), coverage
still adds important evidence to the discussion about model
performances. If models (and their underlying assumptions)
accurately reflect cognitive processes, they must be able to
capture individual behavior in terms of their parameteriza-
tion. Even if the absolute coverage scores may not allow for
precise interpretation, their differences and magnitudes can
be assessed: One the one hand, significant differences be-
tween models highlight substantial differences in their capa-
bility to handle individuals, which is important information
for future modeling endeavors. On the other hand, comparing
the coverage scores of individualized and aggregate models,
i.e., models which do or do not provide parameters for captur-
ing individual differences, respectively, allows for an assess-
ment of the necessary condition of individualized models: If
the performance of an individualized model does not exceed
the performance of its aggregate competitors, its parameters
are unable to properly capture the source of individual differ-
ences. Consequently, an assessment of the theoretical merit
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of the model is not justified. In sum, coverage analyses can
serve as an additional tool in the modeler’s toolbox based on
which the individualization capabilities of models can be as-
sessed comprehensively.

Note that, realistically, we cannot expect models to per-
fectly predict an individual reasoner’s responses because of
the noise that is to be expected in human experimental data
(e.g., motivational issues or misunderstandings with respect
to the task). We therefore contrast the models fitted to indi-
vidual reasoners with both, their aggregated counterparts (fit-
ted to the whole dataset) and the performance obtained from
the most-frequent answer (MFA), a statistical baseline rep-
resenting the upper bound of performance achievable by ap-
proaches that do not leverage the potential of individualiza-
tion (e.g., Riesterer et al., 2019).

Fitting Cognitive Models

For our analysis we rely on two available models for syllo-
gistic reasoning that offer individualization capabilities via
parameterization: mReasoner (Khemlani & Johnson-Laird,
2013) and the Probability Heuristics Model (PHM; Chater &
Oaksford, 1999).

mReasoner mReasoner uses its parameters to specify prob-
ability distributions that configure its model generation and
interpretation processes (e.g., Khemlani & Johnson-Laird,
2016). To find an optimal parameterization, we perform a
grid search with 11 steps resulting in a step size of 0.1 for
parameters ε, σ, ω, and step size 0.79 for λ (14641 parameter
combinations in total). Due to the stochastic nature of its pa-
rameter use, we also apply repeated random sampling query-
ing mReasoner for five predictions to obtain an estimate of
the expected outcome of its probabilistic inference processes.

Probability Heuristics Model (PHM) PHM (Chater &
Oaksford, 1999) is not available publicly as an implemented
and parameterized model. However, in its original specifi-
cation (Chater & Oaksford, 1999), the authors elaborate the
various possibilities to individualize its behavior (e.g., by se-
lecting the conclusion-generation heuristic to apply). Based
on this, we developed a Python-based implementation while
maintaining communication with one of PHM’s authors.

The parameters PHM uses differ from mReasoner’s pa-
rameters in that they specify independent Bernoulli distribu-
tions. Since PHM does not include mechanisms to addition-
ally condition these distributions on the syllogistic problem
being solved, they globally define the inferential behavior of
the model. In our optimization we search for deterministic
reconstructions of reasoning behavior. As such, we try to op-
timize for the expected outcome PHM produces with respect
to its coverage accuracy allowing us to consider the parame-
ters as binary flags. For example, even if a reasoner uses p-
entailment for 40% of the syllogistic responses, the expected
prediction outcome would still be maximized by setting p ent
to 0. Consequently, PHM features a much smaller parame-
ter space even though its number of parameters is higher than

mReasoner-Group mReasoner-Indiv PHM-Group PHM-Indiv
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Figure 1: Coverage performances of the models. The box-
plots describe the prediction accuracies of the models with
boxes ranging between the quartiles, the middle line indicat-
ing the median performance, and whiskers extending to the
last accuracy value within the inter-quartile range. Depicted
are the performances of mReasoner (blue) and PHM (green)
each fitted to both group data and individual data. The dashed
line represents the median performance achieved by the most-
frequent answer (MFA), i.e., the model that always predicts
the response given by most participants in the dataset.

that of mReasoner. This allows us to exhaustively search for
optimal parameterizations.

Dataset
For our analyses we use the Ragni2016 dataset obtained from
the Cognitive Computation for Behavioral Reasoning Anal-
ysis (CCOBRA) Framework2 which contains data from 139
reasoners responding to all 64 syllogistic problems, each. For
each problem, participants were instructed to select the con-
clusion following from both premises out of the nine possible
response options (for more details on the dataset, see Ragni et
al., 2019). The dataset we used, along with the model imple-
mentations and material for this article is publicly available
on GitHub3.

Results
Coverage Performance
Figure 1 depicts the results for the individual coverage per-
formance of the models. It contrasts the models’ predictions
for the “average reasoner” which were not fitted to individual
responses (mReasoner-Group, PHM-Group) with the individ-
ually parameterized variants (mReasoner-Indiv, PHM-Indiv).
Comparing the predictive accuracies of the previous and new
analyses, it becomes apparent that parameterization helps to
boost performance slightly (median performance increases of
6% for mReasoner and 8% for PHM). This suggests that the
available parameters can indeed be used to capture individual
reasoning behavior better than the traditional description of
an “average reasoner”.

A comparison of PHM and mReasoner shows that PHM
slightly outperforms mReasoner. Only PHM is able to ex-
ceed the performance of the most-frequent answer. As such,

2github.com/CognitiveComputationLab/ccobra
3github.com/nriesterer/cogsci-individualization
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Figure 2: Distribution of the optimal parameter values for
mReasoner. The values on the x-axis correspond to the values
used for the applied grid search.

it demonstrates the general ability to capture individual rea-
soning behavior better than purely aggregate models possibly
can.

Parameter Usage
Investigating the distribution of optimal parameter values al-
lows us to determine the efficiency of the model parameters.
If a parameter is predominantly assigned similar values for a
large variety of individuals, it could mean that the underlying
process does not fulfill a meaningful function in represent-
ing individual properties of human reasoning. Conversely, an
evenly occupied parameter space indicates an efficient use of
the available parameters.

mReasoner The resulting distributions of optimal parame-
ter values for mReasoner are depicted in Figure 2. Generally,
mReasoner distributes its parameters fully across their avail-
able parameter ranges. Interestingly, parameters appear to be
either uniformly (ε,λ) or bimodally (ω,σ) distributed. Re-
flecting the propensity to engage in counterexample search
and weakening of the candidate conclusion quantifier, the bi-
modality of σ and ω seems to split individuals into groups
of more or less deliberative reasoners. On the other hand, ε

and λ appear much more continuous in their values. Theo-
retically, this could point to their general ability to capture
the nuances of human reasonings with greater detail. How-
ever, when investigating the fit results, in many cases, the grid
search yielded multiple equally performing parameterizations
for the same individual. Counting the number of different pa-
rameter values, on average, individuals were assigned 4.79
values for ε, 1.74 for λ, 1.47 for ω, and 1.14 for σ. This sug-
gests, at least for ε, that its underlying property, i.e., the com-
pleteness of the constructed mental model, is of limited im-
portance for mReasoner’s fitting capabilities with many cases
in which different values lead to equivalent outcomes.

Probability Heuristics Model PHM’s parameter space oc-
cupancy is presented in Figure 3. The plot depicts a stacked
barplot with blue (left) and orange (right) bars indicating the
number of reasoners for which the corresponding parameters
were set to 0 and 1, respectively.

139 120 100 80 60 40 20 0 20 40 60 80 100 120 139
Number of Reasoners

conf_A

conf_E

conf_I

conf_O

p_ent

param = 0 param = 1

Figure 3: Distribution of PHM’s parameters. The barplots
depict the number of reasoners for which the optimization
results in a value of 0 (blue) or 1 (orange).

With respect to the max heuristic confidence parameters,
the figure shows a gradual shift from conf A to conf O.
This is to be expected, since they are internally ordered and
constrained: conf A ≺ conf I ≺ conf E � conf O (Chater &
Oaksford, 1999). Once a parameter is set to 0, all subsequent
ones have to be 0, too. Consequently, conf A is expected to
show the least amount of 0 values.

p ent exhibits the highest amount of 0 values. It appears
as if only few reasoners consistently behave similar to p-
entailment to generate a conclusion candidate. Revealing a
weakness of PHM’s p-entailment heuristic, it represents a
secondary process to generate conclusion candidates serv-
ing the purpose to capture responses deviating from the min-
heuristic (e.g., Chater & Oaksford, 1999). Since p-entailment
use is expected to only occur occasionally, p-entailment will
not be considered a consistent property of reasoning and as
such is typically set to 0 in our fitting process.

Interestingly, though, despite being severely limited in
its parameterization, PHM is able to outperform mReasoner
which relies on a far more complex parameter space.

Performance Congruency
The overall model performances (Figure 1) suggest minor
differences between mReasoner’s and PHM’s capabilities to
capture individual syllogistic reasoning behavior. This raises
the question to which degree the models differ in their pre-
dictions, i.e., whether they are capable to successfully capture
different subsets of reasoners, or if they are largely congruent
in their performances.

The results of this analysis are depicted in Figure 4. For
each model, we split the reasoners in our dataset into four
groups (quartiles) based on their associated coverage perfor-
mances. In a next step, we compare the groups to determine
their congruency, i.e., the overlap between mReasoner’s and
PHM’s performance-based quartiles. For example, the first
quartile indicates that there is 77% overlap between the in-
dividuals that were captured worst by the models. Overall,
the quartiles of individuals identified for both models aligned
nicely with an average accuracy difference of 5%.

Figure 4 shows that mReasoner and PHM agree most in
the extremes, i.e., in quartiles 1 and 4 representing worst and
best coverage performances, respectively. For quartile 4, this
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Figure 4: Overlap between mReasoner’s and PHM’s perfor-
mance. For each model, reasoners were split into four quar-
tiles (x-axis) in accordance to their respective model predic-
tion accuracies in ascending order. The y-axis depicts the
percentage of matching individuals between mReasoner’s and
PHM’s quartile sets.

result is to be expected because of the aggregation-focused
design of the models. It most likely contains the individuals
that behave similarly to the processes targeted by the models,
i.e., average reasoning behavior. For quartile 1 on the other
hand, the large overlap must not necessarily correspond to
agreement between the models on the level of their assumed
inference mechanisms. It more likely reflects that the par-
ticipants’ reasoning behavior contained in this quartile can-
not be captured adequately by both models’ latent parameter
spaces. Reasons for this could be manifold ranging from high
levels of noise in the data making the response behavior un-
systematic and random to the possibility that reasoners rely
on processes that cannot be explained in terms of the models’
assumed cognitive processes. The latter would be in line with
the aggregated origin of models since it can be assumed that
reasoners differing greatly from the average cannot be ade-
quately captured by the traditional models. Finally, in quar-
tiles 2 and 3, both models disagree more which indicates that
the differences between the models’ inferential mechanisms
manifest most distinctly in medium performance ranges.

Discussion
Recent work evaluating the predictive performance of cog-
nitive models for human syllogistic reasoning demonstrated
substantial shortcomings when shifting the focus from ag-
gregated representations of data to the behavior of individ-
uals (e.g., Riesterer et al., 2019). Having been deemed
a consequence of the prevailing focus on aggregation and
the controversially discussed problem of lacking group-to-
individual generalizability in empirical sciences (e.g., Fisher
et al., 2018), this paper investigated the previously disre-
garded individualization capabilities of models thereby eval-
uating them to the fullest extent of their abilities. By fitting
the two available parameterized models for syllogistic rea-
soning, mReasoner (e.g., Khemlani & Johnson-Laird, 2013)
and the Probability Heuristics Model (PHM; Chater & Oaks-
ford, 1999), to individual response data and evaluating their
ability to successfully recreate the observed reasoning behav-

ior from their latent parameterization alone, we were able to
determine the degree to which they qualify as accurate the-
ories of individual syllogistic reasoning. With accuracies of
between 40% and 50% and the limited parameter efficiencies,
especially for PHM, our results suggest substantial potential
for improvement. Still, the individualizations were able to
achieve a slight improvement in performance over their ag-
gregated counterparts (6% for mReasoner, 8% for PHM).

Going beyond the general prediction accuracies of the
models, our analysis allowed us to investigate the properties
and efficiency of their parameterization. We found that al-
though severely more restricted in terms of its parameters,
PHM achieves similar results as mReasoner which suggests
that its core principles specify a more compact representa-
tion of human reasoning behavior. Still, both models lever-
age the potential for parameterization to a limited degree
only. PHM does not include mechanisms to dynamically se-
lect the heuristics to apply for a given syllogistic problem.
As such, the parameter for selecting the alternative conclu-
sion generation heuristic p-entailment bears almost no signif-
icance for individual reasoning. In case of mReasoner, multi-
ple parameterizations resulting in equivalent coverage perfor-
mances could be determined which indicates limited capabil-
ities to uniquely identify latent representations of reasoners.
Especially ε, which, on average, produced equivalent results
for five out of the eleven possible parameter values, seems to
have negligible influence.

Overall, both models were largely aligned in their ability
to represent specific individuals in terms of their latent pa-
rameters. They performed best on nearly the same set of par-
ticipants (82% congruency) suggesting that, on a functional
level, their different approaches to formalizing human syllo-
gistic reasoning do not differ greatly with respect to the in-
dividuals they can represent. For the case of low accuracies,
a similarly high congruency can be observed suggesting that
the latent parameterizations of both models are unable to ac-
commodate a fairly distinct set of reasoners. It remains an
open question for future research to investigate whether this
is due to noise in the data or due to the models failing to cap-
ture the fundamentally different reasoning behaviors of some
subpopulations of reasoners.

In sum, our work extends previous investigations of the
problems surrounding group-to-individual generalizability in
syllogistic reasoning research by focusing on the parameter-
ization possibilities of cognitive models. Only if we develop
models capable of generating accurate predictions for indi-
vidual reasoners, we will reach levels of performance that
truly justify treating the models’ underlying theoretical as-
sumptions as explanations for the cognitive processes of hu-
mans. Taking into consideration the inter-individual differ-
ences observable in most instances of behavioral data makes
adequate parameterization of models not a commodity but a
necessity. This calls for a paradigm shift not only for the de-
velopment of cognitive models, but also with respect to the
way models are evaluated.
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