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Abstract
Feedback for drawn inferences can lead to an adaption of future
responses and underlying cognitive mechanisms. This article
presents a reanalysis of recent hypothesis-driven experiments in
syllogistic reasoning in which participants were presented with
different feedback conditions (no feedback, 1s, 10s). We extend
the original analysis, which only focused on no feedback vs. 1s
feedback, by including the additional 10s condition. For our analysis,
we rely on the data-driven theory- and hypothesis-agnostic Joint
Nonnegative Matrix Factorization which allows us to contrast
datasets based on the extraction of response patterns reflecting
common and distinct response behavior. Our results support the
previous claims that feedback does not generally boost logical
reasoning ability but reduces the influence of biases against the
response indicating that nothing logically follows from the premises.
Keywords: syllogistic reasoning; feedback; joint nonnegative
matrix factorization; nvc bias

Introduction
It is a well-established fact that individuals do not only differ with
respect to the strategies they employ but are also capable to adapting
them to the problems they are confronted with (e.g., Bucciarelli &
Johnson-Laird, 1999; Roberts et al., 2001). One consequence of this
manifests, for instance, in terms of the effects different instructions
may have on participants’ performances (Dickstein, 1975).

Since the general goal of investigating reasoning is to understand
the processes underlying human inference, exploring these adaption
capabilities is an important paradigm of research. One approach for
this goal is via feedback. A recent study (Dames et al., in press) in-
vestigated the effects of feedback in the domain of human syllogistic
reasoning, which is concerned with inferences based on quantified
relations (e.g., Khemlani & Johnson-Laird, 2012). In the study, par-
ticipants were presented with feedback about the correctness of their
conclusions after each task. The results suggest that feedback helps
to boost logical correctness of responses and leads to post-error adap-
tion effects with respect to reaction times. However, the authors also
note that large parts of the improved correctness could be attributed
to a substantial increase of the response “No Valid Conclusion”
indicating that no quantified conclusion can logically be inferred
from the premises. This casts doubt on the possible interpretation
that feedback benefits logical thinking in its literal meaning.

The study provides insight into the impact of feedback on
syllogistic reasoning ability on a statistical level by relying on a
hypothesis-driven analysis. However, in doing so, the authors essen-
tially apply a hypothesis-based filter to their data which could lead
to additional results being left in the dark. In particular, the question
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remains if the reported results conclusively reflect the effects of
feedback or if further influence on syllogistic response behavior re-
mains. Investigating precisely this influence on the level of response
patterns is crucial for cognitive modeling, because gaining insight
into how manipulations affect human behavior on the response
level could provide the information necessary to develop improved
models, both on the level of predictive accuracy and explainability.

The goal of this article is therefore to obtain insight into the
effects of feedback on the level of response patterns in the domain
of syllogistic reasoning. To adopt a data-analytic perspective that
is unbiased with respect to theoretical assumptions about syllogistic
reasoning ability, we rely on an analysis using Joint Nonnegative
Matrix Factorization (JNMF, Kim et al., 2015), a general approach
for contrasting datasets that was originally introduced in the field
of information systems but has since been transferred to the domain
of reasoning (Brand et al., in press). By simultaneously solving
a matrix factorization problem for two data matrices, JNMF allows
to directly extract patterns which are common or distinct to the
two input datasets. As such, the results of JNMF, in terms of
interpretability and expressiveness, go beyond what single-dataset
factorization methods can offer (Kim et al., 2015).

The remainder of this article is structured into four parts. First,
we introduce the relevant background literature about syllogistic
reasoning and the application of JNMF. Second, we present the
methodology of our analysis. Third, we present the results, i.e.,
the extracted response patterns and interpret them in terms of the
effects of feedback. A discussion of the implications of our analysis
concludes the article.

Related Work
Syllogistic reasoning is one of the central domains investigated in
research of human deductive reasoning ability (e.g., Johnson-Laird
& Byrne, 1991). A syllogism consists of two premises which
specify quantified relationships (using quantifiers All, Some, No,
Some ... not) between three categorical terms (e.g., A, B, C):

No A are B
Some B are not C

What, if anything, follows?

The goal in syllogistic reasoning is to use the middle term,
B, which occurs in both premises to infer information about the
remaining two terms, A and C (end terms). In total, the syllogistic
reasoning domain consists of 64 distinct problems which are
obtained from the 16 possible combinations of premise quantifiers
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and the four possible arrangement of terms in the premise (the
so-called figures; see Khemlani & Johnson-Laird, 2012). Each
syllogistic problem has nine possible propositional conclusions,
eight of which relate the end terms (in either direction) using one
of the four quantifiers, and the conclusion “No Valid Conclusion”
(NVC) to indicate that, in accordance to first-order logic, no
quantified conclusion follows from the premises.

A core result of syllogistic reasoning research is that human
inferences deviate substantially from what classical logic would
predict (e.g., Khemlani & Johnson-Laird, 2012). Because of this,
research in the domain has focused in large parts on the develop-
ment of high-level cognitive theories and corresponding model
implementations (for a review, see Khemlani & Johnson-Laird,
2012). Recently, the interest in the effects of interindividual
differences has been rekindled by studies focusing on different
subgroups of reasoners (Khemlani & Johnson-Laird, 2016) and
analyses of the shortcomings of current models when subjected
to individual response data (Riesterer et al., 2019) being published.

Analyzing individual human reasoning behavior, it could be
shown that human performance in syllogistic reasoning tasks is far
from robust. If participants respond to syllogisms in two sessions
one week apart from each other, logical correctness improves
even though participants are not provided with feedback to their
responses (Johnson-Laird & Steedman, 1978; Ragni et al., 2018).
Similarly, within the sequence of 64 syllogistic problems, it can
be observed that the likelihood of giving NVC conclusions rises
as a function of presented problems, causing logical correctness
to rise (Ragni et al., 2019).

To investigate the susceptibility to changes in syllogistic response
behavior, a recent study adopted a paradigm in which reasoners
were presented with immediate feedback for different durations
indicating the correctness of their responses (Dames et al., in
press). Analyzing the resulting response data, it could be shown
that participants who were not provided with feedback tended
to give less logically correct conclusions than participants in the
feedback group. Additionally, it could be shown that feedback
induced post-error adaption effects causing reaction times to slow
down. The results suggest that participants are capable of adapting
their response behavior in light of feedback. However, the authors
also note that participants who received feedback responded
substantially more often with NVC conclusions. They argue that
this effect could be due to a bias or aversion against NVC responses
which is overcome by providing feedback. This is a hypothesis
that has been discussed, albeit inconclusively, in the literature of
syllogistic reasoning before (e.g., Revlis, 1975; Roberts et al., 2001).

In the following analyses, we want to push the statistical work
of Dames et al. (in press) one step further to obtain results on the
level of behavioral patterns which could lead to information useful
for improving models of human syllogistic reasoning. To this end,
we base our analysis on contrasting.

Joint Nonnegative Matrix Factorization
Contrasting refers to the problem of finding iconic distinction
factors that best describe the differences between datasets. Trivially,
computing differences is one way of performing contrasting.
However, given structurally rich data that are potentially noisy, the

results of trivial contrasting is lacking with respect to their potential
for interpretation. More sophisticated contrasting is based on the
results of factor analyses. For example, by performing Principal
Component Analysis (PCA; e.g., Murphy, 2012), the dimensionality
of data can effectively be reduced to a smaller number of k latent
features which can then serve as the basis for dataset comparison.
However, for two independent applications of PCA such as for two
separate datasets in a contrasting scenario, there is no guarantee
that the resulting factorizations are related and support comparison.
Especially if differences between datasets are expected to be small,
it is important to factor out the commonalities in order to expose
the crucial distinctions.

Motivated by this problem, work in the field of information
systems has developed Joint Nonnegative Matrix Factorization
(JNMF; Kim et al., 2015), an approach for contrasting two datasets
via matrix decomposition. To achieve this, JNMF extends regular
Nonnegative Matrix Factorization (NMF; see Pauca et al., 2004)
by simultaneously searching for factors representing commonalities
and distinctions between both datasets.

Formally, NMF is the problem of finding a decomposition of
a single data matrix X 2Rm⇥n where m is the dimensionality of
the data and n denotes the number of objects in the dataset into
a basis matrix W 2Rm⇥k and coefficient matrix H 2Rn⇥k where
k<min{m,n} is the number of patterns, or factors, to decompose
the data into, such that

X ⇡WHT (1)

JNMF refers to the problem of finding a decomposition of two data
matrices X1 2Rm⇥n1 and X1 2Rm⇥n2 into a basis matrixWi 2Rm⇥k

and a coefficient matrix Hi 2Rni⇥k for i=1,2 (Kim et al., 2015).
Crucially, k = kc +kd refers to the total number of patterns con-
sisting of kc common and kd distinct patterns which means that
Wi =[Wi,c,Wi,d] is composed of columns referring to kc common
(Wi,c) and kd distinct patterns (Wi,d). The goal of JNMF is to find ma-
trices W1,H1 and W2,H2 solving Equation (1) for both data matrices
X1 and X2 under constraints regularizing the identified W and H ma-
trices to ensure that the distances between common and distinct pat-
terns are minimized and maximized, respectively (Kim et al., 2015).

An important advantage of NMF (or JNMF for that matter) for its
application in the context of cognitive science is its focus on nonneg-
ativity. Since data obtained in behavioral experimentation is usually
nonnegative as well (response choices, reaction times, etc.), NMF
operates directly and natively on the expected range of values which
allows for better interpretability of the results (Pauca et al., 2004).

Stemming originally from the field of information systems,
JNMF has recently been applied successfully to syllogistic
reasoning data (Brand et al., in press). In this analysis, the authors
investigated the influence of personality factors on syllogistic
reasoning behavior. Using JNMF, they managed to extract the
patterns distinctly representing the response behavior of participants
with varying scores on personality traits. In the following analyses
we apply this method to feedback data.

Method
Our goal is to investigate the effects of feedback on the responses
given to syllogistic reasoning problems. To this end, we employ
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(a) Control vs. 1s. (b) Control vs. 10s. (c) 1s vs. 10s.

Figure 1: Typical response patterns obtained from JNMF application and arranged as matrices of 64 rows (syllogistic problems) and 9 columns
(possible conclusions). Common patterns represent the average common pattern from W1 and W2. The values in parentheses denote the rela-
tive importances of the patterns for the reconstruction of the dataset. These values are derived from the respective columns of the H-matrices.

JNMF in order to decompose the data into common and distinct
patterns which can then be interpreted directly. Relying on JNMF
allows us to adopt a theory- and hypothesis-agnostic perspective
which, in turn, allows us to obtain comprehensive results which
could potentially go beyond the findings of Dames et al. (in press).

Dataset
For our analysis, we rely on a dataset that was published recently as
part of a study of feedback effects in syllogistic reasoning (Dames et
al., in press). The focus of the study was to investigate the influence
of feedback on participants’ propensities to give logically valid con-
clusions (Dames et al., in press, Experiment 1) and on their reaction
times (Dames et al., in press, Experiment 2). To this end, the authors
conducted a series of experiments via Amazon Mechanical Turk
in which participants were instructed to give conclusions to all 64
syllogistic problems. In total, the dataset comprises three conditions:
a control group which received no feedback (n = 39), a group
which was presented with short feedback (1s, n=102), and a group
which was presented with extended feedback (10s, n=29). In their
analysis, the authors focused on the control and 1s conditions. The
effects of extended feedback have not been published up till now.

Data Preparation
To make the data accessible to JNMF analysis, we first transform the
response data for each condition into matrix representations. This is
achieved by onehot-encoding individual responses as zero-vectors
of dimensionality 9 in which a single 1 indicates the corresponding
response. As examples, for the syllogistic response “All A are C”
this leads to the onehot-encoded vector (1,0,0,0,0,0,0,0,0), and
for “No Valid Conclusion” to (0,0,0,0,0,0,0,0,1). Concatenating
the 64 onehot-encoded responses of a single participant results in
a 576-dimensional vector which reflects their individual response

pattern, or reasoner profile (Riesterer et al., 2019; Brand et al.,
in press). By arranging all reasoner profiles as column vectors
in a matrix, we obtain m⇥n matrices, where m is the number of
features, i.e., the dimensionality of our reasoner profiles (m=576)
and n denotes the number of participants in our datasets (n1 =39,
n2 = 102, and n3 = 29 for no feedback, short feedback, and
extended feedback, respectively). The following analyses are
computed directly on these data matrices. The data and analysis
scripts are publicly available on GitHub1.

Results
Our analyses are based on JNMF application for pairwise
contrasting of the three datasets. For each pair of datasets, JNMF
produces W and H matrices containing the common and distinct
response patterns and their weightings for reconstructing each
individual from the input data, respectively.

Pattern Analysis
The general results of the JNMF application are depicted in Figure 1.
The heatmaps visualize the patterns extracted from the W -matrices
in pairwise contrasting applications for the three feedback
conditions: control vs. 1s (Figure 1a), control vs. 10s (Figure 1b),
and 1s vs. 10s (Figure 1c). In each subplot, the patterns are
presented as heatmaps with distinct patterns located left and right,
and the common pattern being depicted as the mean of the common
vectors from W1 and W2 in the middle. The shading of cells
indicates the weighting of individual responses for the patterns in
accordance to the values in W . The values in parentheses next to the
titles denote the importances of the patterns for the reconstruction
of the original dataset which were calculated from the sum of the

1https://github.com/nriesterer/iccm-nmffeedback
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Table 1: Proportion to reassignment of individuals from source
groups (rows) to target groups (columns) based on response pattern
similarities. Ties were resolved by ignoring participants which
causes percentages to not sum up to 1.

control 1s 10s
control 77% 15%
1s 32% 59%
10s 14% 83%

respective columns in the corresponding H matrix normalized
by the total sum of the H matrix. These values show that, overall,
commonalities are more important than distinctions which is to
be expected in a complex task such as syllogistic reasoning.

Both, the contrasting between control and 1s (Figure 1a),
and between control and 10s (Figure 1b) show that the distinct
differences between the datasets manifest in terms of the dominance
of NVC responses in the feedback groups. Contrasting both
feedback groups (Figure 1c), a different picture emerges. Here,
the 10s group yields a pattern that looks sparse and scattered in
comparison to the other patterns. When taking the importance of
the pattern into consideration, it becomes apparent that the JNMF
assigned only low importance to the 10s pattern suggesting that
the common pattern suffices to reconstruct the original data.

The results suggest that the 1s group reflects a mixture between
the control and 10s group. Contrasted with control, it appears
similar to the 10s pattern. However, when contrasted with 10s, it
appears similar to the control pattern. Evidence supporting this
assumption can be obtained from the similarities between the
response behaviors of individuals which is represented in Table 1.
For a participant from one of the conditions (denoted as source
group), we checked which of the other conditions (target groups)
contained the individual most similar to them. The values therefore
represent proportions to which individuals from one group prefer
another in terms of similar response behavior (ties were resolved
by ignoring the participants which is why values do not sum to
100%). The results illustrate the special role of the 1s group. While
both control and 10s clearly favor 1s over another, 1s is much
more evenly distributed which indicates that it consists both of
participants showing feedback behavior and participants who are
still unaffected by it. In case of 10s, the proportion of individuals
performing similar to controls is reduced substantially.

Put together, the contrastings provide evidence for the NVC
aversion hypothesis (e.g., Revlis, 1975). Contrasted against control,
the distinct patterns of both, 1s and 10s focus chiefly on the NVC
response. However, when comparing the feedback patterns resulting
from contrasting with control, it appears as if the NVC dominance
is stronger for 1s than for 10s which could hint at a time-dependent
effect of feedback. As previously concluded by Dames et al.
(in press), given short (1s) feedback, a lot of participants seem
to quickly grasp the importance of NVC. Combined with the
evidence obtained from the extended (10s) condition, it appears
as if the lack of time to reflect the meaning of NVC results in
participants overestimating the frequency of invalid syllogisms.
There still remain some individuals, though, who are unaffected by

feedback resulting in 1s representing a mixture between reasoning
patterns related to the control and 10s groups. In case of extended
feedback, participants are given time to reflect their use of NVC
which may lead to a more deliberative and careful reliance on this
response affecting most of the individuals in the data. Consequently,
when contrasting between both feedback conditions, due to the
similarities of their NVC reliance, JNMF mainly uses the common
pattern to capture the feedback reasoning behavior (including NVC)
and uses the distinct patterns to capture residual responses.

Prediction Analysis
While the previous analysis illustrated the general structure and
properties of the response patterns for the different conditions of
feedback, their quality still remains obscure. To evaluate this, we
now interpret the obtained patterns as predictive models and subject
them to an analysis in which the accuracy of JNMF patterns in
accounting for individual reasoners’ responses is assessed (for the
predictive task, see Riesterer et al., 2019). In this analysis, we
expect patterns to perform best with respect to predicting responses
on their respective conditions (i.e., the control pattern on the control
dataset and so on). Simultaneously, we expect patterns to perform in
proportion to their importances, i.e., to the number of individuals for
which the pattern is crucial when reconstructing the response data.

Figure 2 depicts the results of this analysis. Datasets on which the
patterns are evaluated are depicted on the x-axis while the y-axis de-
notes the predictive accuracies they achieve. Each line reflects a pat-
tern with colors indicating their respective conditions (grey, blue, red,
and green representing common, control, 1s, and 10s, respectively).

On a high-level, comparing the patterns shows that, overall, the
common patterns achieve the highest predictive accuracies which is
in line with the findings above. Since the common patterns are most
important for reconstructing the data, the distinct patterns are not
expected to be good predictors of reasoning behavior on their own,
while the commonalities reflecting general reasoning behavior are.
Because of this, the quality of the distinct patterns should not be
assessed based on absolute accuracy values but based on their ability
to provide suitable predictors for their respective data conditions.

A prime example for this is the trend of the blue lines correspond-
ing to the no-feedback control patterns. The fact that accuracy drops
substantially on the feedback data indicates that the patterns are
highly descriptive for the control data only and bear little meaning
for the feedback groups. Additionally, the fact that control’s accura-
cies on the feedback data is similar for 1s and 10s suggests that the
differences between the two are minor. Considering the feedback
patterns obtained from contrasting with control (dark red for 1s,
dark green for 10s), a different picture emerges. Here, as expected,
the patterns perform much better in accounting for the feedback
data than for the control data. Put together, the blue, dark red, and
dark green lines illustrate the clear distinction between the control
and feedback groups. Distinct patterns obtained for either condition
are suitable predictors for their own data but offer severely limited
applicability to the other. Additionally, the high similarity between
accuracies on both feedback groups suggests that JNMF application
found patterns distinct to general feedback behavior regardless of
the underlying feedback duration. The lines also show that 10s
elicits the most consistent feedback behavior. While 10s patterns as
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Figure 2: Accuracies of the response patterns resulting from the different contrastings (e.g., “control - 1s”) interpreted as predictive models.
Error bars denote 95% confidence intervals.

expected always perform best on the 10s data, this is also the case
for 1s (dark red). This indicates that contrasting control with 1s does
not only yield particular feedback patterns accounting for 1s, but
general feedback patterns which perform even better on the 10s data.

Considering the contrasting of both feedback conditions (light
red for 1s, light green for 10s), peculiar patterns emerge. The
pattern for 10s (light green) performs best on the 10s data and
drops substantially for the other groups thereby indicating that it
captures distinct properties of the extended 10s feedback group
(despite its scattered appearance in Figure 1c). The pattern for
1s (light red), however, fails to capture feedback behavior scoring
higher on control data than on feedback data. Again, this indicates
that 1s represents a mixed pattern. When compared to control, it
clearly reflects feedback behavior. However, compared to extended
feedback its distinct patterns correspond more to the control group.

The prediction analysis supports the interpretation of the
results so far. The observations can be explained by assuming
a time-dependent influence of feedback on reasoning behavior.
Given naive reasoners, short feedback allows them to acknowledge
the importance of the NVC response causing big parts of them
to radically adapt their behavior in its favor (see Figure 1a) while
leaving the behavior of others unchanged. Extending feedback
increases the effects with diminishing returns. It appears as if
the effects of extended feedback manifest in terms of a more
differentiated or more deliberative use of NVC, which, at its core,
is only a slight deviation from the distinct effects observable in
the short feedback group. As a result, contrasting the feedback
conditions leads to an overestimation of their respective differences
causing the 1s pattern to be pushed towards the naive control state
of reasoning behavior and the 10s pattern to focus on the very few
distinct differences extended feedback results in.

Comparison of Task Performances
In a final analysis, we investigated the congruency of participant
responses with formal logic in order to gain insight into whether
the effects of feedback exclusively affect NVC responses as the
patterns might suggest at a first glance (Figure 1) or if the effects

Table 2: Investigation in terms of logical correctness. The values
refer to average proportions of logical correct responses and their
corresponding standard errors.

Condition Total Valid Syllogisms Invalid Syllogisms

Control (33±3)% (49±2)% (20±4)%
1s (46±2)% (44±1)% (47±2)%
10s (50±4)% (48±4)% (52±6)%

manifest in terms of general logical correctness.
The results of this analysis are summarized in Table 2. The

total correctness shows that logical performance increases with
prolonged feedback. When considering invalid syllogisms, i.e.,
the problems which do not have a propositional conclusion, the
dominance of NVC responses in the feedback condition become
apparent. For the valid syllogisms, however, the changes are more
complex. In line with our interpretation, participants seem to
overestimate the relevance of the NVC response when presented
with short feedback (1s) which results in a decrease in logical
correctness. With extended feedback (10s), participants seem to
be able to handle NVC responses better resulting in a performance
on valid syllogisms that is similar to the control condition.

In conclusion, we agree with Dames et al. (in press) that while
feedback appears to boost logical correctness at first glance, it
is highly unlikely that this is due to an improvement of logical
reasoning ability. Additionally, based on our pattern analysis, we
conclude that the observed effects can be attributed solely to a
different handling of NVC responses.

General Discussion
We investigated the effects of feedback on human reasoning behav-
ior in the domain of syllogistic reasoning using Nonnegative Matrix
Factorization (JNMF; Kim et al., 2015). We were able to replicate
the findings of Dames et al. (in press) who showed that feedback
improves logical correctness of participants’ responses mostly due
to an increase in No Valid Conclusion (NVC) response frequency
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on invalid syllogisms. By relying on a data-driven, theory- and
hypothesis-agnostic approach and by including an extended feed-
back condition (10s; the authors of the original study based their
analyses on the 1s condition alone), we pushed the analysis of feed-
back in terms of its influence on response patterns one step further.

Our results suggest that the impact of feedback depends on the
duration of its presentation. Short feedback (1s) does not allow par-
ticipants to properly reflect about their reasoning strategies. Instead,
as Dames et al. (in press) already suggested, it only teaches them the
relative importance of the NVC response which is logically correct
in 37 of the 64 syllogisms (58%) and a response for which the exis-
tence of biases causing participants to reject it have frequently been
assumed (e.g., Revlis, 1975). Strong evidence for this claim is found
by considering the proportion of logically correct conclusions which
overall increases for the short feedback condition but decreases
on valid syllogisms for which NVC is an incorrect conclusion. If
feedback is extended (10s), an increase of NVC responses is still
the dominating distinction when compared to the control condition
receiving no feedback. The logical correctness of responses to
valid syllogisms remains similar, however. This suggests that the
extended feedback duration allows participants to properly reflect
over their reasoning strategies. As a result, the effects of increased
logical correctness are in terms of invalid syllogisms only. Since
performance on valid syllogisms is not affected positively by feed-
back (at least not significantly), in similar spirit to Dames et al. (in
press), we conclude that feedback does not necessarily help to boost
logical thinking in general. A more likely explanation, especially
considering the differences between 1s and 10s, is, that at first
feedback helps to combat an NVC aversion bias (e.g., Roberts et al.,
2001) which leads to an overestimation of the relevance of NVC.
Given more time to reflect, a more deliberate NVC handling with
overall improved logical correctness is adopted by most reasoners.

For the general field of cognitive modeling, our findings bear
relevance for two reasons. First, it is crucial to keep in mind
that effects such as the lacking performance of reasoners or
the corresponding increase for the feedback condition are not
necessarily explained by fundamental cognitive processes. As
can be shown here, rejections of particular response options must
be considered by experimenters and modelers alike to ensure
the proper interpretation of data and the proper development of
corresponding models. Second, our analysis which was devoid
of theoretical assumptions about potential inferential processes
allowed us to draw comprehensive and unbiased conclusions about
the available data. We strongly believe that maintaining a balance
between theoretical and theory-agnostic exploration of cognition is
key to ensuring a steady and uninterrupted progression of the field.
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