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Abstract

The paper provides insight about the optimization
of the structure of cognitive Multinomial Process
Tree (MPT) models. These cognitive models are
very important tools of evaluation in Cognitive
Science and Psychology. The purpose of these
models is to formalize assumptions about men-
tal processing structures. But which components
represent an effective and good predictive perfor-
mance? There exist no theories to find the optimal
structure of a MPT that optimizes performance.
This article investigates three perspectives on how
parameters and outcome categories of MPTs in-
fluence performance of the models. All results
are empirically demonstrated.

1. Introduction

Multinomial process trees are important tools for stochastic
analysis and research of categorical data in cognitive sci-
ence. They measure different cognitive processes which
arise in mental representation research and test whether psy-
chological assumptions are true or not. The models can be
used in many research fields of cognitive psychology, like
presented in Hilbig et al. (2009). An example domain for
MPTs is memory recognition. Here, a participant learns
a number of vocabularies. Later, a mix of learned and un-
known vocabularies is presented and the participant is asked
to recognize which words were previously shown. In other
words, the participant is asked to perform a classification
into new and old items. In this experiment, the participant
answers with yes for "I learned the vocabulary" and no for
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the contrary. This experiment allows for an investigation
of how memory recollection is handled by human mind.
Researchers try to understand how the mind handles and
studies new information. Based on knowledge of the struc-
ture of mental processes, researchers are able to create i.e.
"power law of practice and forgetting" (Ebbinghaus, Her-
mann).

An interesting research challenge for computer science is to
optimize the structure of MPTs. To this end, optimization
is understood as optimizing the maximum likelihood esti-
mator (MLE, Heck et al., 2018). The higher the MLE value,
the better the fit of the model to given experimental data.
Therefore, the purpose of this work is to research which
structures of an MPT improve the MLE. So far, there are no
theories for MPTs which summarize the influence of a modi-
fication of the structure on performance. However, since the
model structure and the parameter assignment can be ma-
nipulated, it is interesting to investigate which changes have
an influence on the estimator. Based on this knowledge, the-
ories about model compositions that improve performance
can be developed. This will allow assumptions to be made
about good and bad tree structures in the future.

The composition of this article starts with related work. In
this section, a short overview about the standard trees and
the most popular MPT models is given. The next topic ad-
dresses the practical foundation of optimizing MPTs. To
support these optimization strategies, the following section
presents empirical results of model fits. The last section
presents an interpretation of the empirical results, the prob-
lems that arise and consequential conclusion of the project.

2. Related Work

An MPT is a binary tree and consists of categories and pa-
rameters. More precisely, the tree has two possibilities at
every node, which is represented by a parameter, and ends in
a category. The different categories C = {C1, Ca,...,Cp}
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illustrate all outcomes that can occur in an experiment. The
parameters § = {61,065, ...,0,} represent decision possi-
bilities. For example in memory research, if a participant
can not remember a word of the presented set of terms in a
recognition task and tries to guess if the word was learned,
then the parameter at this pattern expresses the estimator for
guessing the correct way and against probability for guess-
ing the wrong way.

For calculating the MLE for a model, the model needs an
estimate for each parameter, which indicates the probability
that this branch of the tree for the path will arrive. More-
over, all category probabilities depend on the parameters
that point to them. To calculate a path for a category, all pa-
rameters on which the category depends are required. Thus
a path for one category ¢; € C}, is given by
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The parameter 6; represents the probability of success of
the process ¢ on this path. Since it is possible to have same
category at the end of more than one path, the paths have to
be summed up, to compute the overall probability of ending
up in category C}, € C:
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forthe pathl =1,2,3, ..., L.
In addition, the estimator of all categories must be equiva-
lent to one:
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In other words, multinomial process trees represent multi-
nomial distributions.

Famous models are for example the one-high threshold
model (IHTM, Hilbig et al., 2009), the two-high thresh-
old model (2HTM, Hilbig et al., 2009) and the two-high
threshold model of monitoring (2HTSM, Heck et al., 2018).
The 1HTM consists of two parameter and two categories.
Thereby the parameters stand for knowing the true answer
and guessing the answer randomly. Both categories are vo-
cabulary of old or new item. The 2HTM has, for both cases
(new and old items), a certainty parameter and one guessing
parameter. Hence, this model consists of three parameters
and two categories in total. The 2HTSM considers an ex-
pansion of the yes-no recognition experiment. Thereby par-
ticipants will learn vocabulary from two different sources
and later they are asked to assign the items to their original
category of source A, source B or New. This makes the
model quite complex due to higher number of categories
and parameters per source. For more information about
MPTs, I recommend the Hilbig et al. (2009) paper.

1-a a a 1-a 1-a a

1-a a a 1-a 1-b

on

(a) Two possibilities with
one parameter for three cat-
egories

(b) Two possibilities with
two parameter for three cat-
egories

Figure 1. First sketches of models with different parameters for
three categories.

3. Optimizations

To find out how the tree structure can influence MLE per-
formance, start with drawing trees with different number
of categories. In order not to make the trees too complex,
I started by drawing different models for two to five cate-
gories. Thereby I depicted for each category class different
quantities of parameters and then different structures. As
a result, there are as many possible models for each case
of quantity as parameters for one category class. To better
understand the procedure, in Figure 1 is an example with
three categories.

Figure 1 illustrates all possibilities for three categories with
the corresponding parameter number. The quality of the
tree structure is examined by how the performance of MLE
changes when the number of parameters and then the partial
structures of the model is changed. Figure la shows two
possibilities of a model with three categories and one param-
eter. The difference between the two models in Figure 1a is
that the lower subtree has been swapped, which changes the
structure. For the first tree, another subtree is attached to the
parameter a and for the second tree to the other parameter
1—a. So you have two possibilities to represent a model for
one parameter and three categories. Figure 1b present two
possibilities with two parameters for three categories. This
example shows that new trees are created by increasing the
number of parameters and exchanging individual subtrees.

In order to establish theories about performance of MLE,
the different models of a category number class are exam-
ined under the following aspects: The first aspect is how
the MLE changes if the number of parameters increases or
decreases. Secondly, I analyse how the estimator is affected
if the structure is modified. At last, I analyse if the estimator
changes if the categories at the end of a path are swapped.

3.1. Creation of Theories

I started with solid number of categories to postulate a the-
ory about the influence of parameter numbers or modifica-
tions of the tree of structure. To study how the structure of
MPTs can be composed, it is helpful to create a non-trivial
"toy-example" like in Figure 2. Figure 2 depicts a possible
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Figure 2. Tree with five categories and four parameters. Split this
tree in two subtrees Figure 2a and Figure 2b. On basis of splitting,
research how the MLE is modified. Futhermore, the structure of
Tree Figure 2b is comparable with the IHTM (Hilbig et al., 2009).
The representation of the tree in the BMPT grammar looks as
follows: abABcdCDFE

tree with five categories. This tree can now be used to in-
vestigate of which partial models the tree is made up of and,
if the model is split in possible subtrees, how many sub-
trees exists. The resulting subtrees can then be compared
with other existing models. If you look at Figure 2 there
exist equivalences of the structures between Figure 2b and
the THMT. But the IHTM has only two categories against
model of Figure 2b with three categories. With the MLE, re-
searchers want to compare the performance of models with
the same number of categories. Thus a direct comparison
is not interesting of these two models. For this reason, we
first check and observe how small components perform in-
dividual.

I simplified the procedure of creating different trees by
relying on the context-free language of BMPT (Purdy &
Batchelder, 2009). Through the recursive construction of
MPTs, it is possible to describe a tree with a formal lan-
guage. With the context-free language it is easier to depict
all different tree structures by iterating through all possibili-
ties.

To take for example the set of categories C' = {1, 2, 3} and
the set of parameters © = {a, b, c}. Define as grammar

Gpupr = ({z}, T, R, x) €]

where {z} is a variable, ' = C U © is the set of terminals,
R is a set of production rules with:

r—c withc € C 5)

T — Ozx with § € © (6)

and z is the start symbol. For example, create a tree with
three categories and two parameters on basis of Gpprpr
proceed as follows:

T — arx — alx — albrx — alb2x — alb23  (7)

Now use the grammar G gy pr to create trees with differ-
ent numbers of parameters and categories. Thereby iterate
through all constellations from one to three parameters or
more. Some of the resulting constellations are:

ala23 ®)
ala32 )
aldal2 (10)
alb23 (11)
acl2b23 (12)

3.1.1. INCREASE AND DECREASE AMOUNT OF
PARAMETERS

The first aspect to be investigated is how the performance
of MLE behaves when the number of parameters changes.
Thereby, the structure of the tree is not modified. The cases
are considered how the estimator behaves when the num-
ber of parameters is lower and higher than the number of
categories. Under the aspect that with more parameters a
more exact fit to the data can be achieved, the performance
of MLE should be better with more parameters. Above all,
it is very interesting to observe how the estimator performs
if the model has exactly one parameter less than the number
of categories.

3.1.2. CHANGE POSITION OF CLASSES

The second case to be investigated is whether the categories
at the end of a path have an impact on MLE. Thereby, it
will be observed how the performance changes if only the
categories at the end of the paths of a model are modified.
So how does the performance change if for example the
two categories of IHTM permute, or if anything changes at
all. Since many paths end in the same category for models
that already exist (like 2HTM), it is interesting to examine
the aspect of whether categories at all have an influence on
performance.

3.1.3. MODIFY STRUCTURE

Finally, the aspect of how much influence the modification
of the tree structure on the performance of MLE has is stud-
ied. After observing the parameters and categories, the last
case is to consider what happens when subtrees are changed.
So it is now examined how the performance changes by the
composition of single subtrees. The number of categories
and the number of parameters are not changed. Only sub-
trees are modified, so that the depth of the individual paths
changes in the model. Since balanced trees can be calcu-
lated better, because of the trees has less depth, the hypoth-
esis that a balanced tree achieve a better performance of
MLE than a tree with the depth of parameter number n is
established here.
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Figure 3. Results of 600 different fits (table has 600 rows) for four categories. The legend shows the parameter combination for four
categories, where each parameter stands for one level in the tree. In each parameter combination category the first datapoint is the MLE
value of an balanced tree. The second datapoint depicts the mean of MLE value if the categories have been shifted. The rest of the
parameter category represents MLE values of different depth possibilities of the trees.

4. Results

The computations of the MLE and plots of solutions are

made with the programming language R. With the aid of

the programming language Python version 3.6, the trees

were created in text files.

First of all, all tree constellations of a category are gener-
ated according to the BMPT grammar (Purdy & Batchelder,
2009) in a text file. This means, all possibilities of constella-
tions, number of parameters and permutation of categories

are listed in the text file.

For R there exists the module MPTinR (Singmann & Kellen,
2013) to work with MPTs. This module supports the evalu-
ation of MLE for MPTs. So that the module can work with
the trees, they have to be converted from the grammar to
the easy format (see Singmann & Kellen, 2013, section
4). To learn more about the module, it is worth reading the
paper by Singmann & Kellen (2013).

Next a table with random values to calculate MLE of the
different trees constellations is created. Colums represent
numbers of observations for the respective category, rows
represent different datasets to use for fitting the data. So that
one can make an empirical statement about the estimator,
many rows, i.e. datasets, are fitted on a tree simultaneously

and the arithmetic mean is taken from the results. The re-
sults are represented in plots and explained in following
sections.

4.1. Plots

To examine the statements of section three, we need to
study how the MLEs behave and change with four and five
categories. A tree with three categories does not have so
many constellation possibilities. For this reason, the results
of three categories are not sufficiently informative, as can
be seen in Appendix A (Figure 9). As the examination
of two categories with only one parameter does not
produce any interesting results, this case does not have
to be considered. In Figure 3 and Figure 5, the different
colors depict different parameter constellations. For every
parameter constellation permute through the parameter to
create all possible structures for a tree with BMPT. Thereby
create only new constellations so that in the end there are
no constellations where only parameters are swapped.

In each parameter combination category, depict the first
datapoint the MLE value of an balanced tree. After, the
datapoints illustrate the estimator values of trees with
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Figure 4. Sorted datapoints of four categories. The black points represent each datapoint of Figure 3 in ascending row sorted.

different depth.

4.1.1. ALTER NUMBER OF PARAMETER

First, we consider the case that the number of parameters is
equal or greater than the number of categories. It is notice-
able in Figure 3 that above a certain number of parameters
the estimator remains unchanged. This can be seen in the
graphic by the combination abc and more parameter. No
change of the MLE is discernible here. Even if the structure
is enlarged by adding more subtrees without changing the
number of categories, the MLE does not change.

On the other hand, if the number of parameter is reduced
a change in the estimator can be observed, as the Figure 3
shows. That gives the impression that the performance of
MLE depends on the number of parameters.

As can be seen in Figure 5, it is more difficult to recognize
a pattern with five categories. However, it can be seen here
again that there is no change in MLE values if the number of
categories is one greater than number parameters. In addi-
tion, you can see that if the number of parameters is smaller
than the number of categories, the estimator shows worse
results than MLE of number of parameter equal to number
of categories.

4.1.2. SWAP CATEGORIES

After decreasing number of parameter, change the cate-
gories at the end. In each parameter combination cate-
gory, the second datapoint illustrates the value of MLE with
swapped categories. In other words, the first and the second
datapoint in each combination depict an equivalent struc-
ture. Only the categories at the end of the trees are swapped.
As can be seen in the Figure 3, the value of MLE does not
change. The results remain static if only the categories are
permuted. Since no influence can be identified, the case
does not need to be considered for five categories.

4.1.3. SWAP SUBTREES

The last aspect to be investigated is the influence of the
change in structure. It examines what happens when sub-
trees are swapped. In other words, how the estimator
changes when the depth of the tree is changed. For ex-
ample, three trees with two different parameters and four
categories of the parameter category abb can be represented
in the BMPT grammar as follows:

abl2b34 (13)
abb1234 (14)
a1b2b34 (15)



aaaa

abab abbc ecccce
aaab abba ® abcc
aaba abbb acbc
= abaa aabc ® more parameter
=] aabb abac
.\ ’/‘\.\ T\ A \ -
= o v\ Vo
£ \ Mot 1T
£ \ \ I \ (-
& | | o i
5§ T \ ‘ iy | Ay
EY | | | TRERY | A
B | | | Wy | | AR
= | | | i\ | | IR
5 | \ | <l | I
§% \“ 1 | - | P
=7 | ‘\ | | c
} \ | ||
s | \ | |
g \ oy | Al
i . - WA
\ |
\/
8 i
¥
0 50 100 150
Trees
Figure 5. Results of 150 different fits (table has 150 rows) for five categories. The legend shows the parameter all permute combination
for five categories. Again each parameter stands for one level in the tree. In each parameter combination category the first datapoint is
the MLE value of an balanced tree. Now the change of the categories is not examined again, since this did not result in any influence on
four categories. The rest of the parameter category represents MLE values of different depth possibilities of the trees.
o aaaa abba acbc
- =] aaab abbb ] more parameter
3 aaba aabc Soring points
v o abaa abac line proportion
o
S
&
5
£sg
By
w
g
E_
39
S
g
=2
i
s
5
S
¥

Trees

Figure 6. Sorted datapoints of five categories. The black points represent each datapoint of Figure 5 in ascending row sorted.

suoneziund() SSAI, S0 [EIWoUr)[nA]




Multinomial Process Tress Optimizations

As can be see in Figure 3 and Figure 5, the different depths
of the tree have an influence on the MLE value. This differ-
ence can be observed in the performance of the individual
parameter categories.

In Figure 3, it can be seen that the first datapoint represents
the best MLE value. One could conclude from this that
a balanced tree performs better than a tree with a certain
depth.

It can also be observed that it seems like the manner of the
estimator performance behave equal at some pattern. So
if you take a closer look to the parameter combination and
how MLE performs if the tree composition has a depth of
three, then by some combinations the performance becomes
very bad. Figure 3 illustrates this with the parameter combi-
nation of aaa and aab. From this one can conclude that for
four categories these combinations are not good combina-
tions for a MPT. Because of small changes in the structure,
the tree performs worse. The remaining combinations show
that changes in the structure do not have a great influence.
Thus, it cannot happen with these parameter combinations
that the tree performs much worse by small changes.

In Figure 5, it seems more difficult to recognize a pattern.
But also the behaviour of the performance seems to repeat
itself here. So you can see again that with some combina-
tions the performance varies quite strongly. This reinforces
the assumption that some parameter combinations are not
good choices for creating a tree.

On the other hand, we can see that not in each parameter
combination, the first datapoint has the best results. There-
fore, not every parameter combination performs best by
a balanced tree. Accordingly, it could be sometimes effi-
ciently to create a tree with a higher depth.

The whole behaviour of the parameter combinations seems
to converge to one value here. Thus the jump in perfor-
mance becomes smaller and smaller with more different
parameter combinations. Consequently, a modification in
the structure of a tree with more different parameters does
not lead to a far from worse performance.

4.2. Modify Results

As can be seen in the results presented in subsection 4.1, the
MLE value for four and five categories depends on some
combinations, which results in jumpes in performance of
MLE. That is why it is interesting to play with the results of
the estimator to see how the performance of MLE behave
on the whole. In this section, the MLE performance in
dependence of the parameter category combination are no
longer studied. Instead, it is examined how the individual
values perform overall.

4.2.1. SORT RESULTS

Firstly we focus on the behaviour of all MLE values. Ac-
cordingly, sort all datapoints and research whether the MLE

Histogram of estimator

------ Gaussian Distribution
o | —— Density curve

Density

o
<
o

300 200 280 270 280 250
Maximum Likelihood Estimator

Figure 7. Histogram of four categories. Thereby each balk repre-
sents occurrence of datapoints at certain MLE value. To analyse
distribution of the occurrence, illustrate gaussian and density curve
distribution also.

performance is discretely or continuously distributed. In
case of continuity, the points should indicate a functional
distribution and, in the other case, clusters would be recog-
nizable in the performance.

In Figure 4, it is recognizable that the datapoints suggest
to follow an inverted logarithmic function. In any case, no
clusters are recognizable. In addition, it is noticeable that
many datapoints are in the interval [—270, —260]. So quite
a lot of tree compositions perform similarly. However, there
are also some tree constellations that perform very bad.
With five categories, as can be seen in Figure 6, it is more
obvious that all values suggest to follow a negative loga-
rithm distribution. The blue line in the figure illustrates the
proportion of the sorted values. It also indicates that the
distribution of the datapoints is approaching the negative
logarithm function. By five categories, many tree compo-
sitions perform in the range of [—420, —380]. Thus, the
range of trees which performance similarly has increased.
It is also important to mention that in both figures the MLE
values converge.

4.2.2. HISTOGRAM OF RESULTS

Another possibility to check how the MLE values are dis-
tributed is to illustrate the values in a histogram like in Fig-
ure 7 and Figure 8. The histogram can be used to determine
whether the performance of the trees is following a spe-
cific distribution. The output of four and five categories is
depicted in Figure 7 and Figure 8. In both figures the Gaus-
sian distribution as well as the density curve is illustrated.
Thus, a direct comparison is possible. The functions were
created on the basis of the frequency distributions.

In the same way the histogram can be used to recognize
which values are represented more frequently in the data
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Figure 8. Histogram of five Categories. Thereby each balk represents occurrence of datapoints at certain MLE value. To analyse
distribution of the occurrence, illustrate gaussian and density curve distribution also.

and how big the gap between some values is. In other
words, how quickly can performance deteriorate due to mi-
nor changes.

Firstly, we analyze the histogram of four categories. In Fig-
ure 7, it can be seen that Gaussian and density curve are
similar but not equivalent. So it could be that the two func-
tions approach each other.

The last bar is the largest. That is because of trees with
higher number of parameter than number of categories all
achieve peak performance. It is also evident, that MLE val-
ues converge to this maximum likelihood value.

As can be seen in Figure 4, in the interval between -270 and
-280, most values are represented. That means many tree
compositions seem to be perform in this range again. In
the figure you can also see that outliers of worse tree con-
stellations are not often represented. Because of the broad
spectrum of outlier incidents, there are greater gaps. Due to
the greater distance between these values, the performance
is worse faster.

Next, we compare how the MLE performance behaves in
the case of five categories in Figure 8. Now the figure shows
that the Gaussian and density curve are more diverse. This
means that no statement about the Gaussian distribution of
the MLE performance is possible.

Furthermore in the case of five categories, more values are

represented in the histogram and less gaps between the bad
performing trees appear. A comparison of Figure 7 and
Figure 8 shows that that the occupancy of the values is
much denser in Figure 8. Due to this density it is now more
difficult to get a much worse performance through small
changes. More tree compositions perform worse, so that it
is difficult to make an general statement about bad param-
eter combinations and tree depth. In addition, some small
gaps exists between the bad performance, which still makes
it possible to get into worse values faster.

In conclusion, it seems like it is possible to make an as-
sumption which numbers and constellations of parameters
support a better performance for multinomial process trees.

5. Discussion

In this project, new theories for optimizing the performance
of MPT were developed. Thereby, three different aspects
were studied.

Firstly, how the performance changes, if the number of pa-
rameter is modified. The result is that a tree with a small
number of parameter performs worse than a tree with more
parameters. In more detail, a tree achieves the best perfor-
mance with one parameter less than number of categories.
Along with it, the performance stagnates as soon as at least
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this number of parameters is given. This means that the per-
formance converges. The interpretation of this behaviour
can be tracked back to systems of linear equations if the
equations have an infinite set of solutions.

Secondly, the influence of categories at the end of the paths
was studied. This resulted in the observation that the mod-
ification of categories does not influence the model’s per-
formance. A reason for this could be that only the classes
and not the structure are altered. Thus, only the name of the
paths change which has no effect on a mathematical level.
In other words, the path itself is not dependent on the class
assignment.

The third aspect that was studied is how the performance is
influenced by swapping the subtrees. It can be seen that by
some parameter combinations the modification of the struc-
ture can have a high influence on the performance. This
means that if the structure was changed by swapping a sub-
tree, the performance becomes worse. It is noticeable that
if the parameter combination has more different parameter,
the performance of MLE is generally better. That means for
the BMPT grammar, if parameters of the same name follow
each other, the performance of MLE is worse. For exam-
ple, the parameter combination of aba achieve better results
of MLE than aab. However, in most cases, balanced trees
achieve the best performance. In other cases, performance
of MLE becomes worse with small modifications.

Finally, the distribution of performance was considered.
The result is that the performance is negative logarithm
distributed. This means that there are no models that will
achieve the same results. However, no Gaussian distribution
applies.

5.1. Problems

The first problem was that the estimator does not change if
the number of parameter is increased. In the case that the
number of parameters corresponds to the number of cate-
gories the performance of MLE stagnates.

This leads to the assumption that more parameters than cat-
egories are absolutely unnecessary. The explanation for this
observation is that if the number of parameters is higher than
the number of categories, the parameters have no unique es-
timates. If we compare it with systems of linear equations
we see that if we have more unknown parameters than equa-
tions, the results depends on one unknown parameter. Con-
sequently, if we reduce this to the problem with MPT, we
can make the assumption for this case that parameters de-
pend on the category. As a result, the MLE does not change
if we have a higher number of parameters than categories.
Secondly, if the number of parameters is reduced, the values
of MLE change. This makes it difficult to make an assump-
tion which tree structure is better and which is worse. The
problem is that if the trees are tested with two different
datasets, the results are completely different. In addition,

it is not possible to make general assumption about which
tree composition achieves better performance of MLE. This
problem can be handled if the trees are fitted many times.
The calculated results are then averaged. With the mean of
all fits it is possible to make a generally statement which
structures of the trees optimize MLE. On the basis of static
results, it is now possible to make an emprically proven
statement.

Thirdly, after the computation of 1000 fits for four cate-
gories started, a new problem showed up. The first plot of
this project should have the mean of each tree of 1000 cy-
cles, but RStudio can not handle such a big datastructure.
Thus, the plots for the categories have the means with fewer
cycles. During the computation of 300, 500 and 700 cycles,
I noticed that the results in the plots looks quite the same.
That means that there must exists regulations of the tree
structures which makes it possible to make an assumption
about if a model performs well.

5.2. Conclusion

By and large, when creating an MPT, the best performance
is achieved if the number of parameters is set to one less
than the number of categories. It is valid:

number Parameter = numberCategory —1  (16)

In addition, when using many parameters nothing will be
changed in performance. As a consequence the tree compo-
sition becomes more complex.
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A. Appendix
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Figure 9. Results of 700 differents fits.

The purpose of this section is to give a short overview about
the results of three categories. Since the results are not very
varied, three categories are not very relevant for analysis.
As you can see in the Figure 9, it is possible to study only
five relevant cases. Thus three categories do not have a
strong significance for the statements of section three. How-
ever, again it is illustrated that the performance converge
and a comparison of the performance of MLE with one and
two parameters depict a difference. The modification of the
tree depth result in no difference between balanced tree and
tree with depth of two.



