Setting up the CCOBRA Framework

Nicolas Riesterer, Lukas Elflein, Paulina Friemann October 30th, 2018

Cognitive Computation Lab, Department of Computer Science, University of Freiburg

- Modeling the experiment instead of abstract processed data
- 2. No constraints with respect to the underlying formalisms
- 3. Strong focus on predictive accuracy/precision

••• <> = 0 •	webexp.informatik.uni Syllog2 experime	-treburg.de C 👌 🗗 et				
Premise 1: No boxers are dancers						
Premise 2	: All typists are	boxers				
Please press the key on yo	ur keyboard that corre	asponds with your answer.				
1: All dancers are typists	9: Some typists are dancers	Space: No conclusion is possible				
4: Some dancers are typists	not 2: No d	dancers are typists				
0: Some typists are not dancers	7: All typists are dancers	8: No typists are dancers				
3: 5	ome dancers are type	sts				

- 1. Framework presents task
- 2. Model generates prediction
- 3. Response is compared with ground truth
- 4. Model adapts to the human
- 5. Framework presents next task

- 1. Installing CCOBRA
- 2. Implementing Models for CCOBRA
- 3. Evaluating Models in CCOBRA
- 4. Submitting Models for the Seminar

Installing from the PyPI index:

```
$> pip install ccobra
$> python -c "import ccobra; dir(ccobra)"
['CCobraData', 'CCobraModel', ..., 'model', 'syllogistic']
```

Attention

CCOBRA is only tested on Python 3 and depends on pandas and numpy.

Since the CCOBRA project is young, changes can and will happen. We will keep you posted.

Python class interface consisting of four methods:

- start_participant: Initializes internal structure for a new participant
- pre_train:

Trains the model on training data prior to the prediction phase

• predict:

Generates a single prediction for a given task

• adapt:

Adapts the model based on a previous task-response combination

Random Model

- Subclassing the CCOBRA model interface
- Predicting a randomly chosen response

Download CCOBRA's Github-Repository:

https://github.com/CognitiveComputationLab/ccobra

Use the contained CCOBRA benchmarking tool:

\$> cd /path/to/ccobra-repository/ccobra-bench

- \$> python runner.py benchmarks/full.json
- \$> python runner.py benchmarks/full.json -m /path/to/model.py

Adaptive Random Model

- Remembers response frequencies
- Samples predictions based on individual response frequencies
- Relies on task encodings

Pre-Trained Adaptive Random Model

- Is initialized based on given training data (of other individuals)
- Relies on adaption as training
- Definition of a custom benchmark

Online Evaluation

https://orca.informatik.uni-freiburg.de/orca_ sylwebsite/orca/

	0 🙂 🗏	orca.informatik.un	-freiburg.de 🔿		• • • • +		
	About Syllogism Placeholder Power						
Syllogistic Reasoning Models Please upload your syllogistic model below. The uploaded zip archive is required to contain a file called "model cyp" in which a model class definition (subclassing coordrasyllogistic SylModel) is located. Please pay attention that this lie is in the top-level directory of your archive and not part of a subfolder. Choose File no file selected Upload Choose File no file selected Upload Cohra (Ceptitive Computation for Behavioral Reasoning Analysis) Daniel Brand -classel brand@cognition.umi-freiburg.dc>							

Online Evaluation

https://orca.informatik.uni-freiburg.de/orca_ sylwebsite/orca/

- The online evaluation website requires zip archives containing the model definition in a file called model.py
- Submissions (midterm, final) are required to be in exactly this archive format
- Use the website to validate your submissions!

- 1. Decide on a general topic and on whether you want to work together with a teammate (send us a mail within the next week)
- 2. Try to implement rapid prototyping strategies and evaluate as often as possible
- 3. Contact us if you encounter any problems or questions (in particular with respect to CCOBRA)
- 4. Your first model will be due December 2nd, 23:59